Active CMV infection in two patients with multiple sclerosis treated with alemtuzumab

2017 ◽  
Vol 23 (6) ◽  
pp. 874-876 ◽  
Author(s):  
Marinella Clerico ◽  
Stefania De Mercanti ◽  
Carlo Alberto Artusi ◽  
Luca Durelli ◽  
Robert T Naismith

Alemtuzumab is a humanized monoclonal antibody targeting the surface molecule CD52, resulting in a rapid depletion of innate and adaptive immune cells. Infection rates in multiple sclerosis (MS) treatment trials were higher in alemtuzumab than in interferon beta–treated patients. We report two MS patients who developed cytomegalovirus disease within 1 month after the first 5-day cycle of alemtuzumab. Upon identification and appropriate treatment of the infection, each recovered completely. Neurologists should be aware of this serious but treatable complication.

Sci ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 12
Author(s):  
Sarah Dhaiban ◽  
Mena Al-Ani ◽  
Noha Mousaad Elemam ◽  
Mahmood H. Al-Aawad ◽  
Zeinab Al-Rawi ◽  
...  

Multiple sclerosis (MS) is a chronic autoimmune disease that affects the myelination of the neurons present in the central nervous system (CNS). The exact etiology of MS development is unclear, but various environmental and genetic factors might play a role in initiating the disease. Experimental autoimmune encephalomyelitis (EAE) is a mouse model that is used to study the pathophysiology of MS disease as well as the effects of possible therapeutic agents. In addition, autoreactive immune cells trigger an inflammatory process upon the recognition of CNS antigens, which leads to destruction of the neurons. These include innate immune cells such as macrophages, dendritic cells, and natural killer cells. Additionally, the activation and extravasation of adaptive immune cells such as CD4+ T cells into the CNS may lead to further exacerbation of the disease. However, many studies revealed that immune cells could have either a protective or pathological role in MS. In this review, we highlight the roles of innate and adaptive immune cellular and soluble players that contribute to the pathogenesis of MS and EAE, which may be used as potential targets for therapy.


Author(s):  
Thea Magrone ◽  
Manrico Magrone ◽  
Matteo Antonio Russo ◽  
Emilio Jirillo

Background: Platelets are cellular fragments derived from bone-marrow megacaryocytes and they are mostly involved in haemostasis and coagulation. However, according to recent data, platelets are able to perform novel immune functions. In fact, they possess a receptorial armamentarium on their membrane for interacting with innate and adaptive immune cells. In addition, platelets also secrete granules which contain cytokines and chemokines for activating and recruiting even distant immune cells. Objectives: The participation of platelets in inflammatory processes will be discussed also in view of their dual role in terms of triggering or resolving inflammation. Involvement of platelets in disease will be illustrated, pointing to their versatile function to either up- or down-regulate pathological mechanisms. Finally, despite the availability of some anti-platelet agents, such as aspirin, dietary manipulation of platelet function is currently investigated. In this regard, special emphasis will be placed on dietary omega-3 polyunsaturated fatty acids (PUFAs) and polyphenol effects on platelets. Conclusion: Platelets play a dual role in inflammatory-immune-mediated diseases either activating or deactivating immune cells. Diet based on substances, such as omega-3 PUFAs and polyphenols, may act as a modulator of platelet function, even if more clinical trials are needed to corroborate such a contention.


2020 ◽  
Vol 32 (1) ◽  
Author(s):  
Nearmeen M. Rashad ◽  
Marwa G. Amer ◽  
Waleed M. Reda Ashour ◽  
Hassan M. Hassanin

Abstract Background Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system with varied clinical features. Disease-modifying drugs (DMDs) of MS associated with different types of thyroiditis. In this cross-sectional study, we aimed to assess the prevalence of thyroid dysfunction in MS and to investigate the association between DMDs and the risk of thyroiditis in MS. A cross-sectional study included 100 patients with relapsing-remitting multiple sclerosis (RRMS) in relapse, and the diagnosed was according to revised McDonald’s criteria 2010. Results Our results revealed that the prevalence of thyroiditis was 40%; autoimmune (34%) and infective (6%) among patients with RRMS in relapse and cerebellar symptoms were significantly higher in patients with thyroiditis compared to patients without thyroiditis. Regarding the association between DMDs and thyroiditis, the prevalence of patients treated with interferon-beta-1b was higher in MS patients with thyroiditis compared to MS patients without thyroiditis. However, the prevalence of patients treated with interferon-beta-1a was lower in MS patients with thyroiditis compared to MS patients without thyroiditis. In addition, we found CMV infection was more common in patients treated by interferon beta-1b and candida infection was common in patients treated by fingolimod. Conclusions Thyroiditis is commonly observed in patients with RRMS in relapse and higher prevalence of patients treated with interferon-beta-1b which is commonly associated with thyroiditis and CMV infection; however, candida thyroid infection was common in MS patients treated by fingolimod.


Open Biology ◽  
2017 ◽  
Vol 7 (4) ◽  
pp. 170006 ◽  
Author(s):  
B. Calì ◽  
B. Molon ◽  
A. Viola

Host immunity plays a central and complex role in dictating tumour progression. Solid tumours are commonly infiltrated by a large number of immune cells that dynamically interact with the surrounding microenvironment. At first, innate and adaptive immune cells successfully cooperate to eradicate microcolonies of transformed cells. Concomitantly, surviving tumour clones start to proliferate and harness immune responses by specifically hijacking anti-tumour effector mechanisms and fostering the accumulation of immunosuppressive immune cell subsets at the tumour site. This pliable interplay between immune and malignant cells is a relentless process that has been concisely organized in three different phases: elimination, equilibrium and escape. In this review, we aim to depict the distinct immune cell subsets and immune-mediated responses characterizing the tumour landscape throughout the three interconnected phases. Importantly, the identification of key immune players and molecules involved in the dynamic crosstalk between tumour and immune system has been crucial for the introduction of reliable prognostic factors and effective therapeutic protocols against cancers.


2010 ◽  
Vol 90 ◽  
pp. 395
Author(s):  
A. S. Tjon ◽  
T. Tha-In ◽  
H. J. Metselaar ◽  
L. V.D. Laan ◽  
Z. M. Groothuismink ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Holger Garn ◽  
Daniel Piotr Potaczek ◽  
Petra Ina Pfefferle

During its 30 years history, the Hygiene Hypothesis has shown itself to be adaptable whenever it has been challenged by new scientific developments and this is a still a continuously ongoing process. In this regard, the mini review aims to discuss some selected new developments in relation to their impact on further fine-tuning and expansion of the Hygiene Hypothesis. This will include the role of recently discovered classes of innate and adaptive immune cells that challenges the old Th1/Th2 paradigm, the applicability of the Hygiene Hypothesis to newly identified allergy/asthma phenotypes with diverse underlying pathomechanistic endotypes, and the increasing knowledge derived from epigenetic studies that leads to better understanding of mechanisms involved in the translation of environmental impacts on biological systems. Further, we discuss in brief the expansion of the Hygiene Hypothesis to other disease areas like psychiatric disorders and cancer and conclude that the continuously developing Hygiene Hypothesis may provide a more generalized explanation for health burden in highly industrialized countries also relation to global changes.


2020 ◽  
Author(s):  
Luca Pangrazzi ◽  
Erin Naismith ◽  
Carina Miggitsch ◽  
Jose’ Antonio Carmona Arana ◽  
Michael Keller ◽  
...  

Abstract Background. Obesity has been associated with chronic inflammation and oxidative stress. Both conditions play a determinant role in the pathogenesis of age-related diseases, such as immunosenescence. Adipose tissue can modulate the function of the immune system with the secretion of molecules influencing the phenotype of immune cells. The importance of the bone marrow (BM) in the maintenance of antigen-experienced adaptive immune cells has been documented in mice. Recently, some groups have investigated the survival of effector/memory T cells in the human BM. Despite this, whether high body mass index (BMI) may affect immune cells in the BM and the production of molecules supporting the maintenance of these cells it is unknown.Methods. Using flow cytometry, the frequency and the phenotype of immune cell populations were measured in paired BM and PB samples obtained from persons with different BMI. Furthermore, the expression of BM cytokines was assessed. The influence of cytomegalovirus (CMV) on T cell subsets was additionally considered, dividing the donors into the CMV- and CMV+ groups.Results. Our study suggests that increased BMI may affect both the maintenance and the phenotype of adaptive immune cells in the BM. While the BM levels of IL-15 and IL-6, supporting the survival of highly differentiated T cells, and oxygen radicals increased in overweight persons, the production of IFNγ and TNF by CD8+ T cells was reduced. In addition, the frequency of B cells and CD4+ T cells positively correlated with BMI in the BM of CMV- persons. Finally, the frequency of several T cell subsets, and the expression of senescence/exhaustion markers within these subpopulations, were affected by BMI. In particular, the levels of bona fide memory T cells may be reduced in overweight persons.Conclusion. Our work suggests that, in addition to aging and CMV, obesity may represent an additional risk factor for immunosenescence in adaptive immune cells. Metabolic interventions may help in improving the fitness of the immune system in the elderly.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sindhu Manivasagam ◽  
Robyn S. Klein

Type III interferons (IFNs) or the lambda IFNs (IFNLs or IFN-λs) are antimicrobial cytokines that play key roles in immune host defense at endothelial and epithelial barriers. IFNLs signal via their heterodimeric receptor, comprised of two subunits, IFNLR1 and interleukin (IL)10Rβ, which defines the cellular specificity of the responses to the cytokines. Recent studies show that IFNL signaling regulates CD4+ T cell differentiation, favoring Th1 cells, which has led to the identification of IFNL as a putative therapeutic target for autoimmune diseases. Here, we summarize the IFNL signaling pathways during antimicrobial immunity, IFNL-mediated immunomodulation of both innate and adaptive immune cells, and induction of autoimmunity.


Sign in / Sign up

Export Citation Format

Share Document