A Review on Heat and Reversion Resistance Compounding

2003 ◽  
Vol 19 (3) ◽  
pp. 143-170 ◽  
Author(s):  
R. N. Datta

When sulfur vulcanized natural rubber compounds are exposed to a thermal ageing environment significant change in physical properties and performance characteristics are observed. These changes are directly related to modifications of the original crosslink structure. Decomposition reactions tend to predominate and thus leading to reduction in crosslink density and physical properties as observed during extended cure and when using higher curing temperatures. The decrease in network density is common when vulcanizates are subject to an anaerobic ageing process. However, in the presence of oxygen, the network density is increased with the main chain modifications playing a vital role. Over the years the rubber industry has developed several compounding approaches to address the changes in crosslink structure during thermal ageing. This paper gives a review of these compounding approaches. As with many formulation changes in rubber compounding, there is a compromise that must be made when attempting to improve one performance characteristic. For example, improving the thermal stability of vulcanized natural rubber compounds by reducing the sulfur content of the crosslink through the use of the more efficient vulcanization systems will reduce dynamic performance property such as fatigue resistance. The challenge is to define a way to improve thermal stability while maintaining dynamic performance characteristics.

2007 ◽  
Vol 80 (3) ◽  
pp. 436-480 ◽  
Author(s):  
R. N. Datta ◽  
N. M. Huntink ◽  
S. Datta ◽  
A. G. Talma

Abstract Degradation of rubber vulcanizates in the presence and absence of air as well as in presence of ozone is reviewed in this paper. The paper also outlines the means to overcome this undesirable phenomenon. Under anaerobic aging conditions, which is termed as reversion, the vulcanizates are exposed to elevated temperature in the absence of oxygen. The consequence of this process is reflected in a decline in physical properties and performance characteristics. These changes are directly related to modifications of the original crosslink structure. Decomposition reactions tend to predominate and thus leading to a reduction in crosslink density and physical properties as observed during extended cure or when using higher curing temperatures. The decrease in network density is common when vulcanizates are subject to an anaerobic aging process. However, in the presence of oxygen, the network density is increased with the main chain modifications playing a vital role. Over the years the rubber industry has developed several compounding approaches to address the changes in crosslink structure during thermal aging. This paper gives a review of these compounding approaches. As with many formulation changes in rubber compounding, there is a compromise that must be made when attempting to improve one performance characteristic. For example, improving the thermal stability of vulcanized natural rubber compounds by reducing the sulfur content of the crosslink through the use of the more efficient vulcanization systems will reduce dynamic performance properties such as fatigue resistance. The challenge is to define a way to improve thermal stability while maintaining dynamic performance characteristics. In the second part, the protection against aerobic ageing as well as in ozone environment is reviewed. The anti-degradant effects are summarized and means to counteract are outlined. The most commonly used antidegradants are N-isopropyl-N′-phenyl-p-phenylenediamine (IPPD) and N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD). Although conventional antidegradants such as IPPD and 6PPD are still the most widely used antidegradants in rubber, there is a trend and demand for longer-lasting and non-staining products. The relatively low molecular weight (MW) antioxidants have undergone an evolutionary change towards higher molecular weight products with the objective to achieve permanence in the rubber polymer, without loss of antioxidant activity. In the last two decades, several approaches have been evaluated in order to achieve this objective: attachment of hydrocarbon chains to conventional antioxidants in order to increase the MW and compatibility with the rubber matrix; oligomeric or polymeric antioxidants; and polymer bound or covulcanizable antioxidants. The disadvantage of polymer bound antioxidants was tackled by grafting antioxidants onto low MW polysiloxanes, which are compatible with many polymers. New developments on antiozonants have focused on non-staining and slow migrating products, which last longer in rubber compounds. Several new types of non-staining antiozonants have been developed, but none of them appeared to be as efficient as the chemically substituted p-phenylenediamines. The most prevalent approach to achieve non-staining ozone protection of rubber compounds is to use an inherently ozone-resistant, saturated backbone polymer in blends with a diene rubber. The disadvantage of this approach however, is the complicated mixing procedure needed to ensure that the required small polymer domain size is obtained


1960 ◽  
Vol 33 (3) ◽  
pp. 810-824 ◽  
Author(s):  
H. C. Baker ◽  
R. M. Foden

Abstract SP rubbers give greater latitude in extrusion and calendering processes by extending the range of operating conditions and giving greater scope for compounding for good physical properties. Compounds based on SP rubbers extrude smoothly with lower die swell at lower temperatures and higher viscosities. Greater productivity is obtained through the faster screw speeds which are possible with SP rubbers in many types of compound. SP rubber compounds calender with greater conformity to gage, greater ease of handling and control of shrinkage of the calendered sheet, at temperatures 10° C lower than normal. The firmer stocks given by SP rubbers and their greater resistance to degradation on milling lead to reduced wastage of unvulcanized compound in the factory, while the stricter control of processing permitted by SP rubbers results in a lower percentage of rejected articles. Evaluation of an experimentally produced SP 90 crepe has indicated the potentialities of a concentrated form of SP rubber as a more efficient processing aid than crosslinked SBR 1009 with NR and SBR.


2016 ◽  
Vol 4 (10) ◽  
pp. 5258-5267 ◽  
Author(s):  
Davide Barana ◽  
Syed Danish Ali ◽  
Anika Salanti ◽  
Marco Orlandi ◽  
Luca Castellani ◽  
...  

2017 ◽  
Vol 34 (1) ◽  
pp. 17 ◽  
Author(s):  
Y. M. SYAMIN ◽  
S. AZEMI ◽  
K. DZARAINI

It was reported recently that high amount of aromatic ring  or number of polycyclic aromatic hydrocarbon compounds found in aromatic oil are carcinogenic. This paper discusses the work to evaluate the Malaysian cooking oil as an alternative option to be used as process oil since cooking oil is safe to use and non-toxic. The performance of cooking oil is compared againstaromatic and paraffinioils. The results showed that rubber compounds containing cooking oil produced almostsimilar cure characteristicsas those produced by aromatic and paraffinioils indicating that it did not interfere with the vulcanization reaction. The physical properties of the vulcanizates containing cooking oil were almostsimilar to those of vulcanizates containing aromatic and paraffinioils, except the rebound resilience. The vulcanizates containing cooking oil gave higher resilience than vulcanizates containing aromatic and paraffinioils. High resilience is one of the desired features for a low rolling resistance tyre. Cooking oil provided this extra advantage.


1957 ◽  
Vol 30 (2) ◽  
pp. 652-666
Author(s):  
W. P. Fletcher ◽  
A. N. Gent ◽  
R. I. Wood

Abstract The changes in physical properties of rubber vulcanizates on approaching the so-called second order transition temperature are discussed and distinction is drawn between these phenomena and those associated with crystallization. A simple apparatus of the torsional pendulum type is used to determine the dynamic stiffness and hysteresis loss factor at a frequency of about 0.5 c.p.s. of vulcanizates in the temperature range 20 to −120° C. A large number of liquids are examined as potential plasticizers for lowering the rubber to glass transition temperature and a number are shown to have a high order of efficiency in this respect. Of these materials some also conform to the overriding requirements of low volatility and adequate compatibility with rubber. The loss in physical properties consequent on increase of plasticizer content is not markedly different for most of the plasticizers. Di-iso-octyl adipate is representative of the liquids which give useful low temperature plasticization and a number of commercial type compounds are developed using this plasticizer with carbon black or silica reinforcement, some of these have transition temperatures approaching those of the silicone rubbers but with a better level of general physical properties. A tentative theoretical treatment for the low temperature plasticization of nonpolar rubbers is discussed and this leads to a law which has been found to predict fairly well the transition temperature of a plasticized natural rubber compound in terms of the index of variation with temperature of the plasticizer viscosity.


1994 ◽  
Vol 67 (2) ◽  
pp. 217-236 ◽  
Author(s):  
Timothy A. Okel ◽  
Walter H. Waddell

Abstract The effectiveness of predicting rubber performance based on measured silica physical properties in silica- and carbon black-filled compounds is presented for three rubber formulations: an off-the-road tire tread, a wire coat stock and a V-belt. Correlation and regression analyses were performed using SAS software for sixteen physical properties of thirteen precipitated silicas, and sixteen rubber compound performance characteristics of the three compounds. Silica physical properties studied include various measurements of surface area and structure, particle size, pH and impurities. Rubber performance characteristics studied include cure properties and physical properties such as stress/strain, tear strength, cut growth resistance, abrasion resistance and heat build-up. The present study confirms that silica surface area is the single best predictor of the effect that varying silica physical properties have on the physical performance of cured, carbon black-filled rubber compounds containing precipitated silica. Silica structure, as measured by DBP absorption and nitrogen or mercury pore volume, is a secondary predictor of certain rubber physical properties. The confidence limits of the predictions is dependent upon the concentration of precipitated silica used in the carbon black-filled rubber compound.


2021 ◽  
Vol 317 ◽  
pp. 300-304
Author(s):  
Mazlina Mustafa Kamal

In recent years, automotive hose and belt specifications have changed, requiring longer product life in terms of swelling, wear and heat ageing. Diene-based rubbers, such as natural rubber (NR) and styrene-butadiene rubber (SBR), have been widely used in diverse industries. However, some apparent defects such as limited ageing resistance and large compression set, have been demonstrated in some rubbers cured by sulfur or peroxides. In the making of general and industrial rubber goods, short production and sufficient scorch time is crucial especially by using an injection moulding. In this work, blend of Epoxidised Natural Rubber (ENR 25) and Butadiene was developed with two types of curing systems namely Conventional and Efficient Vulcanisation system. The aim of the study is to produce a satisfactory heat resistance rubber compounds and adequate process safety for rubber manufacturing. Results showed that curing system applied significantly affected thermal stability property of the compounds. Modulus and hardness of the blends appeared to decrease progressively with ageing. However, greater thermal stability especially ageing at 100°C for 200h was observed with compound containing efficient curing system compared to conventional curing system which corresponded to the cross link density attributed by the torque value and dynamic mechanical analysis. The results on stiffness however was effected by the curing system applied. The influence of cure temperature on the chemical crosslink density on both cure systems are being investigated. The network results will be correlated with the technical properties.


2021 ◽  
Vol 53 (3) ◽  
pp. 210310
Author(s):  
Manuel Alberto Guzmán ◽  
Diego Hernán Giraldo-Vásquez ◽  
Ricardo Moreno

Molecular changes due to high temperatures, sunlight, and oxygen, deteriorate the physical properties of rubber compounds, yielding additional crosslinks and molecular chain breakdown. Since oxidative degradation is the most important factor that determines the durability of rubber components, this study evaluated the mechanical behavior of rubber compounds exposed to accelerated thermal ageing. Therefore, three carbon black-reinforced natural rubber-based compounds typically used for rubber bearings were exposed to thermal oxidation and their mechanical properties under typical loading states were assessed through standardized tests. Significant differences were found due to thermal ageing in the compressive modulus, compression set, and creep compliance in compression, exhibiting a stiffening effect caused by additional crosslinks. However, no significant differences were observed in hardness, which is a superficial measurement and a typical test in the rubber industry to characterize rubber compounds. Therefore, the assessment of ageing in rubber bearings should not be limited to a hardness test, which is required in design standards but also addresses compressive, cyclic, and transient tests. The results obtained in this study can be considered in the design process of rubber bearings by limiting the allowable compressive stress and creep deflection due to ageing effects.


1944 ◽  
Vol 17 (1) ◽  
pp. 173-184
Author(s):  
D. B. Forman

Abstract Control of heat deterioration is a continuous problem for the chemist. In the case of rubber and synthetic elastomers, the rubber chemist has charted the changes in the physical properties of vulcanized elastomers during heat aging. He has developed many methods for retarding the deterioration of rubber compounds by heat; but with the newer synthetic elastomers the development of methods of retarding deterioration by heat is now an active subject of investigation. The degree of deterioration depends on the methods of compounding and curing the different elastomers, as well as on the conditions of aging. In general, continuous exposure to high temperatures softens natural rubber but hardens synthetic elastomers. Inherently Neoprene has greater heat resistance than natural rubber. Many investigators have described the heat resistance of rubber vulcanizates, but only a few have reported on the heat resistance of Neoprene vulcanizates, and these reports have been primarily comparisons of given Neoprene vulcanizates with one or more rubber stocks. The compounding of Neoprene (Type GN) for heat resistance was discussed by Catton, Fraser, and Forman. The oxygen bomb aging of Neoprene (Types E and GN) was compared with that of various rubber compositions by Neal, Bimmerman, and Vincent.


Sign in / Sign up

Export Citation Format

Share Document