Effect of tungsten carbide on mechanical and tribological properties of jute/sisal/E-glass fabrics reinforced natural rubber/epoxy composites

2017 ◽  
Vol 48 (4) ◽  
pp. 713-737 ◽  
Author(s):  
D Athith ◽  
MR Sanjay ◽  
TG Yashas Gowda ◽  
P Madhu ◽  
GR Arpitha ◽  
...  

Natural fiber polymer composites have been largely used in applications like aerospace, automotive, marine, and other civil structures, where mechanical and tribological properties are of prime consideration. The performance of hybrid composites can be improved by using different natural fibers and adding particulate fillers to them. In this study, mechanical and tribological properties of jute/sisal/E-glass fabrics reinforcing matrix such as natural rubber and epoxy filled with different proportion of tungsten carbide (WC) powder were studied. Mechanical properties like tensile strength, flexural strength, impact strength, and also tribological behavior like two-body abrasive wear of composite were studied. Taguchi technique was employed for wear analysis. Results revealed that there is a significant change in the mechanical properties and enhancement of wear behavior was noticed due to the incorporation of filler (WC) particles.

Author(s):  
M. Dinesh ◽  
R. Asokan ◽  
S. Vignesh ◽  
Chitikena Phani Kumar ◽  
Rajulapati Ravichand

Over the years, application of composite materials has got wider. So there is a necessity for development of new materials to satisfy the environmental requirements. It is viable through the process of hybridization of natural fibers to synthetic fibers. This investigation is carried out to determine the tensile and flexural strength of hybrid composites with various fiber combinations and stacking sequence. Thus it is easy to identify the natural fiber hybrid combination with high mechanical properties under static and varying thermal load conditions. The various fiber materials are meticulously chosen and three conventional and six different hybrid laminates were fabricated with various stacking sequences of selected fibers using hand layup technique. The tensile and flexural properties are determined through mechanical testing and compared with conventional materials. The failure morphologies are captured and investigated with zoom optical cameras. On analyzing the results, it is observed that carbon-flax hybrid composites exhibit nearly equivalent specific strength at a reduced cost compared to the carbon/glass fiber hybrid composites and also the effect of the stacking sequence in mechanical properties is elucidated through this study. Varying thermal load analysis reveals that there is a considerable loss in mechanical properties due to thermal exposure.


2019 ◽  
Vol 8 (3) ◽  
pp. 2450-2453

Usage of Natural Fiber Composites (NFC) is increased rapidly due to the bio degradability nature of the fibers. These natural fibers are mixed with synthetic fibers to obtain better mechanical properties. In this study, pine apple and glass fiber reinforced epoxy composites are developed and their mechanical properties were evaluated. Composites were prepared by varying the fibers content and by using hand layup process with glass moulds of size 160 x 160 x 3 mm3 . The obtained laminates were sliced as per the ASTM criterion to test the properties. Higher glass fiber content in the composite specimen obtained higher mechanical properties. The composites can be utilized for the purpose of manufacturing components like doors panels, desks, roof tops etc.


2017 ◽  
Vol 47 (8) ◽  
pp. 2050-2073 ◽  
Author(s):  
A Praveen Kumar ◽  
M Nalla Mohamed

Economic and environmental concerns lead the researchers toward development of sustainable and renewable materials of which reinforced composites are part of. The abundantly available natural fibers have attracted the researchers to study their performance as reinforcements and feasibility for making automobile components. The performance of composite materials is mainly assessed through their mechanical properties. However, natural fibers to date were mainly used as reinforcements to create bulk composite components with reduced cost rather than improved mechanical performances. Among the methods available for improving mechanical properties of the natural fiber composites, combined mercerization treatment, hybridization, and incorporation of fly ash fillers in the matrix are the best solutions. Therefore, the objective of this research is to evaluate the tensile properties of hybrid kenaf/glass composites with and without fly ash particulate filler as per ASTM standards. Moisture absorption behavior and its effect on the tensile properties of hybrid composites are also investigated. The results revealed that the addition of 10wt % fly ash particles with natural fiber composites increased the tensile strength of composites while hybridization with glass fibers reduced the water absorption properties.


2014 ◽  
Vol 592-594 ◽  
pp. 202-205
Author(s):  
V. Santhanam ◽  
M. Chandrasekaran ◽  
N. Venkateshwaran

Composite materials are widely used for their superior properties such as high strength to weight ratio, high tensile strength, low thermal expansion, low density etc. Due to environmental issues the eco-friendly composites are being explored. Natural fibers as reinforcement for polymer composites are widely studied. But natural fibers lack better mechanical properties when compared with synthetic fibers. Hence mixing the natural fiber with a synthetic fiber such as glass fiber will improve mechanical properties of the composites. In this study banana fiber is mixed with glass fiber, and the mixture is used as reinforcement in epoxy matrix. The composite specimens were prepared using hand layup technique, the fibers were randomly oriented. Further the fiber length was varied as 10, 15, 20 and 25mm and volume fraction as 10%, 15%, 20% and 25%. Experiments were conducted to find the effect of fiber length and volume fraction on tensile strength, flexural strength, water absorption properties of the composites. It is observed that a fiber length of 20mm and 20% fiber volume fraction gave better mechanical properties.


2019 ◽  
Vol 48 (4) ◽  
pp. 272-276
Author(s):  
Giridharan R. ◽  
Jenarthanan M.P.

Purpose Natural fiber composites have been proven an alternative to conventional composites in many applications such as automotive and transportation industries owing to their eco-friendliness and abundant availability. Also, they are recyclable and biodegradable. Therefore, the need for composites having superior performance is increasing consistently, which has prompted the research reported in this paper. This paper aims to fabricate and evaluate the properties of hybrid composites using glass and cotton fiber with epoxy resin. Design/methodology/approach They were prepared by hand lay-up method, using e-glass and cotton fibers. Epoxy resin used in the preparation of composites. The composites were hybridized at two weight percentages (20 and 30 Wt.%). The prepared samples were tested to evaluate its properties, such as tensile strength, flexural strength, impact strength and scanning electron microscope . Findings Microscopic examination revealed the morphological features. Hybrid fiber reinforced epoxy composite (HFREC) exhibited better mechanical properties than the individual samples. It is clear that 30 Wt.% fraction of fiber is better in mechanical properties than 20 Wt.% fraction of fiber reinforcement in both glass fiber and cotton fiber as reinforcement. Also, the hybridization of fibers resulted in increase in properties. Research limitations/implications As cotton fibers are biodegradable, recyclable and lightweight, it has many applications and is mainly used as automotive components, aerospace parts, sporting goods and building industry when reinforced with glass and epoxy. With this scenario, the obtained results of cotton fiber reinforced composites are not ignorable, which could be of potential use, as it leads to better use of available natural fibers. Originality/value This work discovered the properties of e-glass and cotton fiber reinforced epoxy resin hybrid composites (hybridized at different weight percentages), which has not been attempted so far.


Author(s):  
S Karthikeyan ◽  
N Rajini ◽  
M Jawaid ◽  
JT Winowlin Jappes ◽  
MTH Thariq ◽  
...  

Natural fibers based composites having good mechanical properties have attracted tribologists to explore their application range from friction materials to friction modifiers. Hybridization of the fiber reinforced polymer composite is necessary to ensure combined mechanical strength and tribological properties. Hence, this review discusses “hybrid natural fiber composites” in detail. Earlier, reports listed the tribological failure in polymer composites from the view point of mechanical failures such as fiber/matrix interfacial debonding, matrix crack, fiber fragments, and debris generation. The present review focuses on the transfer layer formation, influence of contact temperature, and degradation of self-lubricating polymer behavior of natural fiber based hybrid composites. The authors assume that present review article on the tribological properties of hybrid composites can guide the research community towards innovative material design for tribological applications by the hybridization of natural fiber composites.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1323
Author(s):  
M. J. Suriani ◽  
Hannah Zalifah Rapi ◽  
R. A. Ilyas ◽  
Michal Petrů ◽  
S. M. Sapuan

In recent years, most boat fabrication companies use 100% synthetic fiber-reinforced composite materials, due to their high performance of mechanical properties. In the new trend of research on the fabrication of boat structure using natural fiber hybrid with kevlar/fiberglass-reinforced composite, the result of tensile, bending, and impact strength showed that glass fiber-reinforced polyester composite gave high strength with increasing glass fiber contents. At some point, realizing the cost of synthetic fiber is getting higher, researchers today have started to use natural fibers that are seen as a more cost-effective option. Natural fibers, however, have some disadvantages, such as high moisture absorption, due to repelling nature; low wettability; low thermal stability; and quality variation, which lead to the degradation of composite properties. In recent times, hybridization is recommended by most researchers as a solution to natural fiber’s weaknesses and to reduce the use of synthetic fibers that are not environmentally friendly. In addition, hybrid composite has its own special advantages, i.e., balanced strength and stiffness, reduced weight and cost, improved fatigue resistance and fracture toughness, and improved impact resistance. The synthetic–nature fiber hybrid composites are used in a variety of applications as a modern material that has attracted most manufacturing industries’ attention to shift to using the hybrid composite. Some of the previous studies stated that delamination and manufacturing had influenced the performance of the hybrid composites. In order to expand the use of natural fiber as a successful reinforcement in hybrid composite, the factor that affects the manufacturing defects needs to be investigated. In this review paper, a compilation of the reviews on the delamination and a few common manufacturing defect types illustrating the overview of the impact on the mechanical properties encountered by most of the composite manufacturing industries are presented.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2220
Author(s):  
Zaida Ortega ◽  
Francisco Romero ◽  
Rubén Paz ◽  
Luis Suárez ◽  
Antonio Nizardo Benítez ◽  
...  

This paper compares the mechanical properties of different natural fiber composites produced by rotational molding as a way of waste valorization from campaigns to control invasive plant species in Macaronesia. Rotomolded parts produced with polymeric matrices (polyethylene) and filled with up to 20% by weight of cellulosic fibers obtained from Arundo donax L., Pennisetum setaceum, and Ricinus communis plants were characterized in terms of tensile, flexural, and impact strength. It was found that the sieving of natural fibers allowed for their introduction in higher loadings, from 10 (for un-sieved material) to 20%; fiber size greatly affected the mechanical properties of the final parts, although some combinations were proven not to reduce the mechanical properties of the neat resin. This study is a first approach to the valorization of residues obtained from periodic campaigns of the control of invasive species performed by public authorities, usually at the local level. It is important to highlight that the main objective of this research did not focus on economically profitable activity; instead, it was focused on the reduction of wastes to be disposed from ecosystem maintenance actions and the investment of potential income into preservation policies.


2021 ◽  
Vol 32 ◽  
pp. 85-97
Author(s):  
Gunturu Bujjibabu ◽  
Vemulapalli Chittaranjan Das ◽  
Malkapuram Ramakrishna ◽  
Konduru Nagarjuna

Banana/Coir fiber reinforced polypropylene hybrid composites was formulated by using twin screw extruder and injection molding machine. Specimens were prepared untreated and treated B/C Hybrid composites with 4% and 8% of MA-g-PP to increase its compatibility with the polypropylene matrix. Both the without MA-g-PP and with MA-g-PP B/C hybrid composites was utilized and three levels of B/C fiber loadings 15/5, 10/10 and 5/15 % were used during manufacturing of B/C reinforced polypropylene hybrid composites. In this work mechanical performance (tensile, flexural and impact strengths) of untreated and treated (coupling agent) with 4% and 8% of MA-g-PP B/C fibers reinforced polypropylene hybrid composite have been investigated. Treated with MA-g-PP B/C fibers reinforced specimens explored better mechanical properties compared to untreated B/C fibers reinforced polypropylene hybrid composites. Mechanical tests represents that tensile, flexural and impact strength increases with increase in concentration of coupling agent compared to without coupling agent MA-g-PP hybrid composites . B/C fibers reinforced polymer composites exhibited higher tensile, flexural and impact strength at 5% of Banana fiber, 15% of fiber Coir in the presence of 8% of MA-g-PP compared to 4% of MA-g-PP and untreated hybrid composites. The percentage of water absorption in the B/C fibers reinforced polypropylene hybrid composites resisted due to the presence of coupling agent MA-g-PP and thermogravimetry analysis (TGA) also has done.


Sign in / Sign up

Export Citation Format

Share Document