scholarly journals miR-331-3p Inhibits Proliferation and Promotes Apoptosis of Nasopharyngeal Carcinoma Cells by Targeting elf4B-PI3K-AKT Pathway

2020 ◽  
Vol 19 ◽  
pp. 153303381989225 ◽  
Author(s):  
Zhang Xuefang ◽  
Zheng Ruinian ◽  
Jiang Liji ◽  
Zhang Chun ◽  
Zheng Qiaolan ◽  
...  

Background: The incidence of nasopharyngeal carcinoma is increasing gradually, but the pathogenesis is not completely clear. MicroRNA, a highly conserved endogenous noncoding small molecule RNA, plays an essential role in the regulation of gene expression and is a hotspot in cancer research worldwide. Objectives: Although previous studies have confirmed that the abnormal expression of microRNAs is closely related to the progression of nasopharyngeal carcinoma, the role of miRNA-331-3p in nasopharyngeal carcinoma has not been studied. The purpose of this study was to explore the role and mechanism of miRNA-331-3p in the progression of nasopharyngeal carcinoma. Materials and Methods: Real-time quantitative reverse transcription polymerase chain reaction was performed to detect the expression of miRNA-331-3p in nasopharyngeal carcinoma clinical samples and cell lines (CNE-1 and 5-8F cells). After overexpression of miRNA-331-3p in CNE-1 cells, cell proliferation was measured by Cell Counting Kit-8 assay, cell invasion was detected by Transwell assay, and apoptosis was tested by flow cytometry. In addition, the dual-luciferase reporter assay was used to identify the target gene of miRNA-331-3p and Western blotting was performed to measure the relative protein expression. Results: The expression of miRNA-331-3p in nasopharyngeal carcinoma clinical samples and cells was decreased significantly. Overexpression of miRNA-331-3p markedly inhibited the proliferation and invasion of CNE-1 cells and promoted cell apoptosis. Moreover, overexpression of miRNA-331-3p reduced the expression of target gene elF4B, leading to inhibition of the phosphorylation of Phosphoinositide 3-kinase (PI3K) and Serine/ threonine kinase (AKT). Conclusion: miRNA-331-3p inhibited cell proliferation and induced cell apoptosis in nasopharyngeal carcinoma by targeting elF4B gene and then blocked the PI3K-AKT signaling pathway. Significance: The role of miRNA-331-3p in the development of NPC and its mechanism provide new ideas for the treatment of nasopharyngeal carcinoma.

2021 ◽  
Author(s):  
Tao Cheng ◽  
Weibing Shuang ◽  
Dawen Ye ◽  
Wenzhi Zhang ◽  
Zhao Yang ◽  
...  

AbstractBackgroundRenal cell carcinoma (RCC) is a fatal malignant tumor with high morbidity. Numerous medical studies have suggested that long noncoding RNAs (lncRNAs) exert their biological function on various cancerous progresses. Herein, functions of lncRNA SNHG16 in RCC cells and the mechanism medicated by SNHG16 were investigated.MethodsThe expression levels of SNHG16 and its downstream genes in RCC cells and tissues were examined utilizing reverse transcription quantitative polymerase chain reaction analyses. Cell counting kit-8 and 5-Ethynyl-2’-deoxyuridine assays were carried out to evaluate the proliferation of RCC cells, and flow cytometry analyses were employed to determine the apoptosis of RCC cells. Western blot analysis was applied to examine protein levels associated with cell proliferation and apoptosis. The combination between SNHG16 and miRNA as well as miRNA and its target gene were explored by luciferase reporter, RNA pull down, and RNA immunoprecipitation assays.ResultsThe significant upregulation of SNHG16 was observed in RCC tissues and cells. SNHG16 downregulation inhibited the proliferation and promoted the apoptosis of RCC cells. In addition, SNHG16 served as a competing endogenous RNA for miR-1301-3p, and STARD9 was a target gene of miR-1301-3p in RCC cells. SNHG16 upregulated STARD9 expression by binding with miR-1301-3p in RCC cells. Rescue assays validated that SNHG16 promoted RCC cell promotion and induced RCC cell apoptosis by upregulating STARD9 expression.ConclusionsSNHG16 promotes RCC cell proliferation and suppresses RCC cell apoptosis via interaction with miR-1301-3p to upregulate STARD9 expression in RCC cells.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jipeng Lu ◽  
Zhongxiong Wu ◽  
Ying Xiong

Abstract Background Osteoarthritis (OA) is a joint disease characterized via destruction of cartilage. Chondrocyte damage is associated with cartilage destruction during OA. Long noncoding RNAs (lncRNAs) are implicated in the regulation of chondrocyte damage in OA progression. This study aims to investigate the role and underlying mechanism of lncRNA homeobox antisense intergenic RNA (HOTAIR) in OA chondrocyte injury. Methods Twenty-three OA patients and healthy controls without OA were recruited. Chondrocytes were isolated from OA cartilage tissues. HOTAIR, microRNA-107 (miR-107) and C-X-C motif chemokine ligand 12 (CXCL12) levels were measured by quantitative real-time polymerase chain reaction and western blot. Cell proliferation, apoptosis and extracellular matrix (ECM) degradation were measured using cell counting kit-8, flow cytometry and western blot. The target interaction was explored by bioinformatics, luciferase reporter and RNA immunoprecipitation assays. Results HOTAIR expression was enhanced, and miR-107 level was reduced in OA cartilage samples. HOTAIR overexpression inhibited cell proliferation, but induced cell apoptosis and ECM degradation in chondrocytes. HOTAIR knockdown caused an opposite effect. MiR-107 was sponged and inhibited via HOTAIR, and knockdown of miR-107 mitigated the effect of HOTAIR silence on chondrocyte injury. CXCL12 was targeted by miR-107. CXCL12 overexpression attenuated the roles of miR-107 overexpression or HOTAIR knockdown in the proliferation, apoptosis and ECM degradation. CXCL12 expression was decreased by HOTAIR silence, and restored by knockdown of miR-107. Conclusion HOTAIR knockdown promoted chondrocyte proliferation, but inhibited cell apoptosis and ECM degradation in OA chondrocytes by regulating the miR-107/CXCL12 axis.


2020 ◽  
Vol 98 (6) ◽  
pp. 653-660 ◽  
Author(s):  
Xiaoxing Xie ◽  
Gaoyun Xiong ◽  
Wenjun Chen ◽  
Hongdan Fu ◽  
Mingqian Li ◽  
...  

FOXD3 has been found previously to positively regulate miR-26b, a tumor inhibitor of nasopharyngeal carcinoma (NPC). However, FOXD3’s precise function and associated mechanism of action in NPC have not yet been investigated. In this study, the expression of FOXD3 mRNA and protein was evaluated using RT-qPCR, western blotting, and immunohistochemistry. Protein levels involved in the phosphoinositide 3-kinase – protein kinase B (PI3K–Akt) pathway were assessed by western blot, and cell proliferation was determined by MTT and colony forming assays. Additionally, cell apoptosis was assessed by flow cytometric assay. Finally, the migration and invasion capabilities of the NPC cells were determined using wound healing and Transwell assays. We found that FOXD3 levels were relatively low in NPC tissue and cells, while an increase caused the inhibition of the PI3K–Akt pathway. Functional experiments found that overexpression of FOXD3 suppressed cell proliferation, migration, and invasion and enhanced cell apoptosis in NPC C6661 cells. IGF-1, an activator of the PI3K–Akt pathway, reversed the inhibitory effect of FOXD3. Furthermore, we found upregulation of the PI3K–Akt pathway and upregulation of the inhibitory effects of FOXD3 on C6661 cellular activities. In conclusion, FOXD3 negatively affected the PI3K–Akt pathway to restrain the processes involved in C6661 cell pathology. These findings further exposed the function and downstream axis of FOXD3 in NPC and displayed a promising new target for NPC therapy.


Author(s):  
Xinping Chen ◽  
Weihua Xu ◽  
Zhichao Ma ◽  
Juan Zhu ◽  
Junjie Hu ◽  
...  

Background: Increasing circular RNAs (circRNAs) are reported to participate in cancer progression. Nonetheless, the role of circRNAs in nasopharyngeal carcinoma (NPC) has not been fully clarified. This work is aimed to probe the role of circ_0000215 in NPC.Methods: Circ_0000215 expression in NPC tissues and cell lines was examined by quantitative real-time polymerase chain reaction (qRT-PCR). Cell counting kit-8 (CCK-8) assay, 5-bromo-2′-deoxyuridine (BrdU) assay, scratch healing assay and Transwell experiment were executed to investigate the regulatory function of circ_0000215 on the proliferation, migration and invasion of NPC cells. RNA immunoprecipitation (RIP), pull-down and dual-luciferase reporter experiments were utilized to determine the binding relationship between circ_0000215 and miR-512-5p, and between miR-512-5p and phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) 3′UTR. The effects of circ_0000215 on NPC growth and metastasis in vivo were examined with nude mice model. Western blot was applied to detect the regulatory effects of circ_0000215 and miR-512-5p on PIK3R1 expression.Results: Circ_0000215 was overexpressed in NPC tissues and cell lines. The functional experiments confirmed that knockdown of circ_0000215 impeded the growth and metastasis of NPC cells in vitro and in vivo. Additionally, circ_0000215 could also work as a molecular sponge to repress miR-512-5p expression. PIK3R1 was validated as a target gene of miR-512-5p, and circ_0000215 could increase the expression level of PIK3R1 in NPC cells via suppressing miR-512-5p.Conclusion: Circ_0000215 is overexpressed in NPC and exerts oncogenic effects in NPC through regulating miR-512-5p/PIK3R1 axis.


2021 ◽  
Vol 11 (5) ◽  
pp. 896-902
Author(s):  
Jinwei Zhao ◽  
Ling Li

MicroRNAs have been reported to be associated with the initiation and progression of rheumatoid arthritis (RA). miR-216a-5p, one of the miRNAs, is involved in cancer cell proliferation, invasion and migration. However, the role of miR-216a-5p in RA remains to be explored. The expressions of miR-216a-5p and zinc finger and BTB domain-containing protein 2 (ZBTB2) in fibroblast-like synoviocytes (FLS) of RA or healthy controls were detected by qRT-PCR and western blot analysis. Transfection of overexpressed and silenced miR-216a-5p were performed to explore the functional role of miR-216a-5p in RA-FLS. Cell Counting Kit-8 (CCK-8) assay and transwell assay were employed to assess cell proliferation and cell invasion, respectively. Moreover, luciferase reporter assay was executed to verify the combination of miR-216a-5p and ZBTB2. The results showed that miR-216a-5p expression in RA-FLS was downregulated than healthy controls. Overexpres-sion of miR-216a-5p inhibited RA-FLS cell proliferation, invasion and migration, while miR-216a-5p silencing revealed the opposite results. In addition, ZBTB2 was identified to be a direct target of miR-216a-5p in RA-FLS and its expression was higher than that in healthy controls. Rescue experiments revealed that ZBTB2 overexpression reversed the effects of miR-216a-5p on the proliferation, invasion and migration of RA-FLS. These data indicated the suppressive role of miR-216a-5p in RA-FLS via the regulation of ZBTB2, suggesting that miR-216a-5p and ZBTB2 may be the new targets for the treatment of RA.


2019 ◽  
Vol 39 (8) ◽  
Author(s):  
Liyuan Zou ◽  
Xiaokun Ma ◽  
Shuo Lin ◽  
Bingyuan Wu ◽  
Yang Chen ◽  
...  

Abstract Long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) plays an important role in protection of ischemia–reperfusion (I/R) injury in brain and liver. However, role of MEG3 in myocardial I/R injury remains unclear. Here, the role of MEG3 in protection of myocardial I/R injury and its association with microRNA-7-5p (miR-7-5p) was investigated using rat cardiac I/R model and myocardial I/R cell model. Our results showed that MEG3 was significantly up-regulated and miR-7-5p was significantly down-regulated after I/R. Following I/R, the levels of intact PARP and intact caspase-3 were reduced, while the cleaved fragments of PARP and caspase-3 were increased. TUNEL assay showed an increase in cardiomyocyte apoptosis after I/R. The levels of I/R-induced creatine kinase (CK) and lactate dehydrogenase (LDH) were inhibited by knockdown of MEG3 (siMEG3). SiMEG3 increased cell proliferation and inhibited cell apoptosis after I/R. In contrast, overexpression of MEG3 increased the I/R-induced CK and LDH activities and cell apoptosis and decreased cell proliferation. The dual-luciferase reporter system showed a direct binding of MEG3 to miR-7-5p. The level of miR-7-5p was negatively associated with the change in levels of MEG3 in H9c2 cells. The levels of intact RARP1 and caspase-3 were significantly increased by knockdown of MEG3. Co-transfection of miR-7-5p inhibitor with siMEG3 activates CK and LDH, significantly decreased cell proliferation, increased cell apoptosis, and decreased intact poly(ADP-ribose) polymerase 1 (PARP1) and caspase-3. In summary, down-regulation of MEG3 protects myocardial cells against I/R-induced apoptosis through miR-7-5p/PARP1 pathway, which might provide a new therapeutic target for treatment of myocardial I/R injury.


2020 ◽  
Vol 40 (10) ◽  
Author(s):  
Xiaohui Duan ◽  
Wei Li ◽  
Peng Hu ◽  
Bo Jiang ◽  
Jianhui Yang ◽  
...  

Abstract Hepatocellular carcinoma (HCC) remains one of the most common malignant tumors worldwide. The present study aimed to investigate the biological role of microRNA-183-5p (miR-183-5p), a novel tumor-related microRNA (miRNA), in HCC and illuminate the possible molecular mechanisms. The expression patterns of miR-183-5p in clinical samples were characterized using qPCR analysis. Kaplan–Meier survival curve was applied to evaluate the correlation between miR-183-5p expression and overall survival of HCC patients. Effects of miR-183-5p knockdown on HCC cell proliferation, apoptosis, migration and invasion capabilities were determined via Cell Counting Kit-8 (CCK8) assays, flow cytometry, scratch wound healing assays and Transwell invasion assays, respectively. Mouse neoplasm transplantation models were established to assess the effects of miR-183-5p knockdown on tumor growth in vivo. Bioinformatics analysis, dual-luciferase reporter assays and rescue assays were performed for mechanistic researches. Results showed that miR-183-5p was highly expressed in tumorous tissues compared with adjacent normal tissues. Elevated miR-183-5p expression correlated with shorter overall survival of HCC patients. Moreover, miR-183-5p knockdown significantly suppressed proliferation, survival, migration and invasion of HCC cells compared with negative control treatment. Consistently, miR-183-5p knockdown restrained tumor growth in vivo. Furthermore, programmed cell death factor 4 (PDCD4) was identified as a direct target of miR-183-5p. Additionally, PDCD4 down-regulation was observed to abrogate the inhibitory effects of miR-183-5p knockdown on malignant phenotypes of HCC cells. Collectively, our data suggest that miR-183-5p may exert an oncogenic role in HCC through directly targeting PDCD4. The current study may offer some new insights into understanding the role of miR-183-5p in HCC.


Author(s):  
Xuhui Fan ◽  
Meng Liu ◽  
Li Fei ◽  
Zhihui Huang ◽  
Yufeng Yan

Circular RNA (circRNA) is a key regulator of tumor progression. However, the role of circFOXM1 in glioblastoma (GBM) progression is unclear. The aim of this study was to investigate the role of circFOXM1 in GBM progression. The expression levels of circFOXM1, miR-577 and E2F transcription factor 5 (E2F5) were examined by real-time quantitative PCR. Cell counting kit 8 assay, EdU staining and transwell assay were used to detect cell proliferation, migration, and invasion. The levels of glutamine, glutamate and α-ketoglutarate were determined to evaluate the glutaminolysis ability of cells. Protein expression was tested by western blot analysis. Dual-luciferase reporter assay, RNA pull-down assay and RNA immunoprecipitation assay were employed to verify the interaction between miR-577 and circFOXM1 or E2F5. Mice xenograft model for GBM was constructed to perform in vivo experiments. Our results showed that circFOXM1 was highly expressed in GBM tumor tissues and cells. Silencing of circFOXM1 inhibited GBM cell proliferation, migration, invasion, glutaminolysis, as well as tumor growth. MiR-577 could be sponged by circFOXM1, and its inhibitor could reverse the suppressive effect of circFOXM1 downregulation on GBM progression. E2F5 was a target of miR-577, and the effect of its knockdown on GBM progression was consistent with that of circFOXM1 silencing. CircFOXM1 positively regulated E2F5 expression, while miR-577 negatively regulated E2F5 expression. In conclusion, our data confirmed that circFOXM1 could serve as a sponge of miR-577 to enhance the progression of GBM by targeting E2F5, which revealed that circFOXM1 might be a biomarker for GBM treatment.


2019 ◽  
Vol 39 (10) ◽  
Author(s):  
Haibin Liu ◽  
Yin Cheng ◽  
Yaping Xu ◽  
He Xu ◽  
Zheng Lin ◽  
...  

Abstract A close relation between microRNA-151a-3p (miR-151a-3p) and nasopharyngeal carcinoma (NPC) has been reported, however, the molecular mechanism is still unclear. The aim of the present study was to explore the mechanism in the promotion of miR-151a-3p to NPC progression. The levels of miR-151-3p in several NPC cell lines were detected in order to screen an experimental cell line. MiR-151a-3p mimic and inhibitor were constructed and transfected into 5-8F cells and cell proliferation were detected by Cell Counting Kit-8 (CCK-8). The apoptosis rate, cell migration and invasion were determined by flow cytometry, wound healing and Transwell assays. The predicted target was further verified by luciferase reporter assay. Real-time quantification-PCR and Western blot were carried out for mRNA and protein level analysis. Tumor protein p53 was co-transfected to verify the functions of miR-151a-3p. The miR-151a-3p level in NPC tissues was much higher than that in adjacent tissues. After transfecting cells with miR-151a-3p mimic, the cell proliferation and patients’ survival rate were much increased, and this was accompanied by the increase in B-cell lymphoma 2 (Bcl-2) and decreases in Bax and cleaved caspase-3 (P<0.01). Moreover, the migration rate and number of invaded cells were also remarkably increased, however, the miR-151a-3p inhibitor had opposite effects on the 5-8F cells. Noticeably, p53 was revealed as a potential target of miR-151a-3p. Co-transfection of P53 could partially reverse the promotive effects of miR-151a-3p on NPC cell progression. Our data indicated that blocking p53 expression and mediated signal pathways contribute to the positive effects of miR-151a-3p on NPC cell proliferation, migration and invasion.


2021 ◽  
Vol 11 (5) ◽  
pp. 820-831
Author(s):  
Jun-Chao Bai ◽  
Guang-Yi Huang

Prostate cancer (PC) is one major carcinoma threat to the health of males. microRNAs (miRNAs) are short non-coding transcripts with about 23 nt in length. Booming evidence has verified the various roles of miRNAs in human tumors. miR-1825 was once demonstrated to be highly expressed in PC, but the potential role of miR-1825 in PC has never been clarified yet. This work aimed to explore the function of miR-1825 and reveal the underlying modulation mechanism in PC. First, miR-1825 was detected to be elevated in PC cells compared with normal prostate cells, as proved by RT-qPCR. After miR-1825 expression was inhibited, cell proliferation was hindered and cell apoptosis was promoted, which was observed by CCK8, colony formation, TUNEL staining and western blot assays. Bioinformatics tools discovered the targeting of suppressor of cancer cell invasion (SCAI) by miR-1825, which was further confirmed by luciferase reporter assay. Then the suppression of miR-1825 on SCAI protein expression was verified by western blotting. Eventually, rescue assays were implemented and affirmed the miR-1825/SCAI axis in PC cells. In conclusion, our present research disclosed the oncogenic role of miR-1825 and the miR-1825/SCAI pathway in PC. These findings gave new clues for the therapy of PC.


Sign in / Sign up

Export Citation Format

Share Document