Properties of Hydrophilic Chitosan/Polysulfone Nanofibrous Filtration Membrane

2014 ◽  
Vol 9 (1) ◽  
pp. 155892501400900 ◽  
Author(s):  
Leigen Liu ◽  
Zhijuan Pan

Electrospun nanofibrous membranes are useful water filtration materials due to their high interconnected porosity and tunable pore sizes, which cause very high permeability and selectivity. However, poor mechanical properties and easy fouling due to their extremely high surface area limit their applications. Therefore, it is desirable to enhance the mechanical properties and the hydrophilicity of such electrospun nanofibrous membranes. In this paper, electrospun polysulfone (PSF) nanofibrous membranes were treated with plasma. Crosslinked chitosan solution was then employed to pad the membranes. We studied the influence of the chitosan concentration and the volume of glutaraldehyde on the morphology, porosity structure, mechanical properties and hydrophilicity of electrospun polysulfone nanofibrous membranes. The results showed that the average pore size decreased from 4.5 μm to 2.68 μm, the breaking stress increased from 6.01±0.44 MPa to 9.25±0.45 MPa, and the water contact angle decreased from 130.8° to 0° in 30 s when chitosan was applied to the membranes. These changes occurred by padding due to the crosslinked chitosan solution. The results indicate that a significant improvement occurred in the mechanical properties; the highly hydrophobic PSF membrane was changed to a superhydrophilic one and the pore size was reduced. These results encouraged us to propose this material as a water filtration membrane with longer life span, lower fouling and higher rejection efficiency.

1992 ◽  
Vol 270 ◽  
Author(s):  
F-M. Kong ◽  
S.S. Hulsey ◽  
C.T. Alviso ◽  
R.W. Pekala

ABSTRACTCarbon aerogels are synthesized via the polycondensation of resorcinol and formaldehyde, followed by supercritical drying and pyrolysis at 1050 °C in nitrogen. Because of their interconnected porosity, ultrafine cell structure and high surface area, carbon aerogels have many potential applications, such as in supercapacitors, battery electrodes, catalyst supports, and gas filters. The performance of carbon aerogels in the latter two applications depends on the permeability or gas flow conductance in these materials. By measuring the pressure differential across a thin specimen and the nitrogen gas flow rate in the viscous regime, we calculated the permeability of carbon aerogels from equations based upon Darcy's law. Our measurements show that carbon aerogels have apparent permeabilities on the order of 10−12 to 10−10 cm2 for densities ranging from 0.44 to 0.05 g/cm3. Like their mechanical properties, the permeability of carbon aerogels follows a power law relationship with density and average pore size. Such findings help us to estimate the average pore sizes of carbon aerogels once their densities are known. This paper reveals the relationships among permeability, pore size and density in carbon aerogels.


2013 ◽  
Vol 690-693 ◽  
pp. 409-414
Author(s):  
Kui Fan Su ◽  
Li Ming Wang ◽  
Xiang Yun Deng ◽  
Jian Bao Li ◽  
Chun Peng Wang ◽  
...  

Silicon carbide ceramic composite filter membrane materials were prepared by dry pressure molding and synchronous sintering process at sintering temperature of 1300oC for 3h. and research the influence of on the molding pressure structure of SiC filtration membrane,effect of particle size on porosity, average pore size and filter pressure drop of filtration membrane, SEM was performed to examine the morphology, The porosity ,average pore size and filter pressure drop of filtration membrane were tested by Archimedes method ,bubble point method and filter pressure drop instrument. It is demonstrated that while the molding pressure (F) varied from 1MPa to 10MPa, the filter membrane material achieved preferable morphology and best performance when F equals to 5MPa. Under this modeling pressure, while silicon carbide particle size increased from 1 to 23μm, the pore ratio decreased from 48.0% to 36.2% and the average pore size increased from 0.35μm to 9.4μm, while the air gas velocity changed from 0 to 0.112m/s, the filter pressure drop increased, when the velocity is stable, the filter pressure drop reduced as the silicon carbide particle size.


2007 ◽  
Vol 534-536 ◽  
pp. 977-980
Author(s):  
Yasuo Yamada ◽  
Yun Cang Li ◽  
Takumi Banno ◽  
Zhen Kai Xie ◽  
Cui E Wen

Micro-porous nickel (Ni) with an open cell structure was fabricated by a special powder metallurgical process, which includes the adding of a space-holding material. The average pore size of the micro-porous Ni samples approximated 30 μm and 150 μm, and the porosity ranged from 60 % to 80 %. The porous characteristics of the Ni samples were observed using scanning electron microscopy (SEM) and the mechanical properties were evaluated using compressive tests. For comparison, porous Ni samples with a macro-porous structure prepared by both powder metallurgy (pore size 800 μm) and the traditional chemical vapour deposition (CVD) method (pore size 1300 μm) were also presented. Results indicated that the porous Ni samples with a micro-porous structure exhibited different deformation behaviour and dramatically increased mechanical properties, compared to those of the macro-porous Ni samples.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3754
Author(s):  
Jan Kohout ◽  
Petr Koutník ◽  
Pavlína Hájková ◽  
Eliška Kohoutová ◽  
Aleš Soukup

A metakaolinite-based geopolymer binder was prepared by using calcined claystone as the main raw material and potassium as the alkaline activator. Chamotte was added (65 vol%) to form geopolymer composites. Potassium hydroxide (KOH) was used to adjust the molar ratio of K/Al and the effect of K/Al on thermo-mechanical properties of geopolymer composites was investigated. This study aimed to analyze the effect of K/Al ratio and exposure to high temperatures (up to 1200 °C) on the compressive and flexural strengths, phase composition, pore size distribution, and thermal dilatation. With an increasing K/Al ratio, the crystallization temperature of the new phases (leucite and kalsilite) decreased. Increasing content of K/Al led to a decline in the onset temperature of the major shrinkage. The average pore size slightly increased with increasing K/Al ratio at laboratory temperature. Mechanical properties of geopolymer composites showed degradation with the increase of the K/Al ratio. The exception was the local maximum at a K/Al ratio equal to one. The results showed that the compressive strength decreases with increasing temperature. For thermal applications above 600 °C, it is better to use samples with lower K/Al ratios (0.55 or 0.70).


2021 ◽  
Vol 63 (6) ◽  
pp. 749-756
Author(s):  
I. S. Chashchin ◽  
M. S. Rubina ◽  
N. A. Arkharova ◽  
M. A. Pigaleva

Abstract Polymer sponges based on chitosan are first obtained from chitosan solutions in carbonic acid and gels based on these solutions crosslinked by a noncytotoxic agent of natural origin, genipin. A comparative analysis of the structure and mechanical strength properties of sponges prepared from chitosan solutions in carbonic and acetic acids is carried out. It is shown that the addition of genipin in an amount of ~2 wt % to a chitosan solution in carbonic acid leads to a decrease in the average pore size by ~2.5 times and a significant increase in the strength characteristics of the material in comparison with the sponge prepared without genipin.


2019 ◽  
Vol 5 (4) ◽  
pp. 82 ◽  
Author(s):  
Jemma Rowlandson ◽  
James Coombs OBrien ◽  
Karen Edler ◽  
Mi Tian ◽  
Valeska Ting

Lignin is a significant by-product of the paper pulping and biofuel industries. Upgrading lignin to a high-value product is essential for the economic viability of biorefineries for bioethanol production and environmentally benign pulping processes. In this work, the feasibility of lignin-derived activated carbons for hydrogen storage was studied using a Design of Experiments methodology, for a time and cost-efficient exploration of the synthesis process. Four factors (carbonisation temperature, activation temperature, carbonisation time, and activation time) were investigated simultaneously. Development of a mathematical model allowed the factors with the greatest impact to be identified using regression analysis for three responses: surface area, average pore size, and hydrogen uptake at 77 K and 1 bar. Maximising the surface area required activation conditions using the highest settings, however, a low carbonisation temperature was also revealed to be integral to prevent detrimental and excessive pore widening. A small pore size, vital for efficient hydrogen uptake, could be achieved by using low carbonisation temperature but also low activation temperatures. An optimum was achieved using the lowest carbonisation conditions (350 °C for 30 min) to retain a smaller pore size, followed by activation under the severest conditions (1000 °C for 60 min) to maximise surface area and hydrogen uptake. These conditions yielded a material with a high surface area of 1400 m2 g−1 and hydrogen uptake of 1.9 wt.% at 77 K and 1 bar.


2007 ◽  
Vol 539-543 ◽  
pp. 1833-1838 ◽  
Author(s):  
Yasuo Yamada ◽  
Takumi Banno ◽  
Zhen Kai Xie ◽  
Yun Cang Li ◽  
Cui E Wen

In the present study, nickel foams with an open cell microporous structure were fabricated by the so-called space-holding particle sintering method, which included the adding of a particulate polymeric material (PMMA). The average pore size of the nickel foams approximated 10.5 μm; and the porosity ranged from 70 % to 80 %. The porous characteristics of the nickel foams were observed using scanning electron microscopy and the mechanical properties were evaluated using compressive tests. For comparison, nickel foams with an open-cell macroporous structure (pore size approximately 1.3 mm) were also presented. Results indicated that the nickel foams with a microporous structure possess enhanced mechanical properties than those with a macroporous structure.


2020 ◽  
Vol 981 ◽  
pp. 356-361
Author(s):  
Mohamad Haziq Alias ◽  
Noor Syafiqah Hassin ◽  
Pui Pui Lau ◽  
Izan Izwan Misnon ◽  
Rajan Jose

Innovation in water filtration media leads to tremendous focus in academia due to fresh water source declining and contamination. Electrospinning is considered as new and effective protocols in synthesizing filtration membrane for this purpose. Electrospun membrane of PVDF and CA composite at different ratios has been fabricated for water filtration application. The membranes were characterized using TGA, FTIR, viscometer, conductivity testing, contact angle and FESEM. TGA result showed a shifting in thermal stability with respect to the increasing PVDF ratio (90P10C). FTIR analysis showing five membrane samples had the same functional groups included C-F, =C-H, C-O, C=O, C-H and O-H groups. The FESEM showed a nanofiber with an average diameter of 0.43324 nm and posses the average pore size of 0.3068 μm. Contact angle of the membrane is increased by the PVDF increment (130o @ 10:90 ratio). The filtration analysis of lake water demonstrates the best performing membrane 90P10C give 84.9% rejection at a high flux (26,253 L m-2 h-1), low turbidity (0.38 NTU) and comply to Malaysia Water Standard Type 1


2017 ◽  
Vol 54 (3) ◽  
pp. 181-201
Author(s):  
Rebecca Johnson ◽  
Mark Longman ◽  
Brian Ruskin

The Three Forks Formation, which is about 230 ft thick along the southern Nesson Anticline (McKenzie County, ND), has four “benches” with distinct petrographic and petrophysical characteristics that impact reservoir quality. These relatively clean benches are separated by slightly more illitic (higher gamma-ray) intervals that range in thickness from 10 to 20 ft. Here we compare pore sizes observed in scanning electron microscope (SEM) images of the benches to the total porosity calculated from binned precession decay times from a suite of 13 nuclear magnetic resonance (NMR) logs in the study area as well as the logarithmic mean of the relaxation decay time (T2 Log Mean) from these NMR logs. The results show that the NMR log is a valid tool for quantifying pore sizes and pore size distributions in the Three Forks Formation and that the T2 Log Mean can be correlated to a range of pore sizes within each bench of the Three Forks Formation. The first (shallowest) bench of the Three Forks is about 35 ft thick and consists of tan to green silty and shaly laminated dolomite mudstones. It has good reservoir characteristics in part because it was affected by organic acids and received the highest oil charge from the overlying lower Bakken black shale source rocks. The 13 NMR logs from the study area show that it has an average of 7.5% total porosity (compared to 8% measured core porosity), and ranges from 5% to 10%. SEM study shows that both intercrystalline pores and secondary moldic pores formed by selective partial dissolution of some grains are present. The intercrystalline pores are typically triangular and occur between euhedral dolomite rhombs that range in size from 10 to 20 microns. The dolomite crystals have distinct iron-rich (ferroan) rims. Many of the intercrystalline pores are partly filled with fibrous authigenic illite, but overall pore size typically ranges from 1 to 5 microns. As expected, the first bench has the highest oil saturations in the Three Forks Formation, averaging 50% with a range from 30% to 70%. The second bench is also about 35 ft thick and consists of silty and shaly dolomite mudstones and rip-up clast breccias with euhedral dolomite crystals that range in size from 10 to 25 microns. Its color is quite variable, ranging from green to tan to red. The reservoir quality of the second bench data set appears to change based on proximity to the Nesson anticline. In the wells off the southeast flank of the Nesson anticline, the water saturation averages 75%, ranging from 64% to 91%. On the crest of the Nesson anticline, the water saturation averages 55%, ranging from 40% to 70%. NMR porosity is consistent across the entire area of interest - averaging 7.3% and ranging from 5% to 9%. Porosity observed from samples collected on the southeast flank of the Nesson Anticline is mainly as intercrystalline pores that have been extensively filled with chlorite clay platelets. In the water saturated southeastern Nesson Anticline, this bench contains few or no secondary pores and the iron-rich rims on the dolomite crystals are less developed than those in the first bench. The chlorite platelets in the intercrystalline pores reduce average pore size to 500 to 800 nanometers. The third bench is about 55 ft thick and is the most calcareous of the Three Forks benches with 20 to 40% calcite and a proportionate reduction in dolomite content near its top. It is also quite silty and shaly with a distinct reddish color. Its dolomite crystals are 20 to 50 microns in size and partly abraded and dissolved. Ferroan dolomite rims are absent. This interval averages 7.1% porosity and ranges from 5% to 9%, but the pores average just 200 nanometers in size and occur mainly as microinterparticle pores between illite flakes in intracrystalline pores in the dolomite crystals. This interval has little or no oil saturation on the southern Nesson Anticline. Unlike other porosity tools, the NMR tool is a lithology independent measurement. The alignment of hydrogen nuclei to the applied magnetic field and the subsequent return to incoherence are described by two decay time constants, longitudinal relaxation time (T1) and transverse relaxation time (T2). T2 is essentially the rate at which hydrogen nuclei lose alignment to the external magnetic field. The logarithmic mean of T2 (T2 Log Mean) has been correlated to pore-size distribution. In this study, we show that the assumption that T2 Log Mean can be used as a proxy for pore-size distribution changes is valid in the Three Forks Formation. While the NMR total porosity from T2 remains relatively consistent in the three benches of the Three Forks, there are significant changes in the T2 Log Mean from bench to bench. There is a positive correlation between changes in T2 Log Mean and average pore size measured on SEM samples. Study of a “type” well, QEP’s Ernie 7-2-11 BHD (Sec. 11, T149N, R95W, McKenzie County), shows that the 1- to 5-micron pores in the first bench have a T2 Log Mean relaxation time of 10.2 msec, whereas the 500- to 800-nanometer pores in the chlorite-filled intercrystalline pores in the second bench have a T2 Log Mean of 4.96 msec. This compares with a T2 Log Mean of 2.86 msec in 3rd bench where pores average just 200 nanometers in size. These data suggest that the NMR log is a useful tool for quantifying average pore size in the various benches of the Three Forks Formation.


2021 ◽  
Vol 13 (14) ◽  
pp. 7593
Author(s):  
Farooq Khan Niazi ◽  
Malik Adeel Umer ◽  
Ashfaq Ahmed ◽  
Muhammad Arslan Hafeez ◽  
Zafar Khan ◽  
...  

Ultrafiltration membranes offer a progressive and efficient means to filter out various process fluids. The prime factor influencing ultrafiltration to a great extent is the porosity of the membranes employed. Regarding membrane development, alumina membranes are extensively studied due to their uniform porosity and mechanical strength. The present research work is specifically aimed towards the investigation of nanoporous alumina membranes, as a function of sintering parameters, on ultrafiltration performance. Alumina membranes are fabricated by sintering at various temperatures ranging from 1200–1300 °C for different holding times between 5–15 h. The morphological analysis, conducted using Scanning electron microscopy (SEM), revealed a homogeneous distribution of pores throughout the surface and cross-section of the membranes developed. It was observed that an increase in the sintering temperature and time resulted in a gradual decrease in the average pore size. A sample with an optimal pore size of 73.65 nm achieved after sintering at 1250 °C for 15 h, was used for the evaluation of ultrafiltration performance. However, the best mechanical strength and highest stress-bearing ability were exhibited by the sample sintered at 1300 °C for 5 h, whereas the sample sintered at 1250 °C for 5 h displayed the highest strain in terms of compression. The selected alumina membrane sample demonstrated excellent performance in the ultrafiltration of sugarcane juice, compared to the other process liquids.


Sign in / Sign up

Export Citation Format

Share Document