scholarly journals Dust removal characteristics of a supersonic antigravity siphon atomization nozzle

2020 ◽  
Vol 12 (12) ◽  
pp. 168781402097768
Author(s):  
Tian Zhang ◽  
Deji Jing ◽  
Shaocheng Ge ◽  
Jiren Wang ◽  
Xi Chen ◽  
...  

To improve the trapping efficiency of respiratory dust by aerodynamic atomization, reduce the energy consumption and the requirements for the working conditions of nozzles and maintain the health and safety of workers, a comparative experiment evaluating aerodynamic atomization dust removal characteristics was conducted with a self-developed supersonic siphon atomization nozzle, which utilizes a Laval nozzle as the core, and an existing ultrasonic atomization nozzle. The experimental results showed that the new type of nozzle, from the perspectives of droplet speed, conservation of water and pressure, range, and attenuation view, completely surpasses the traditional pneumatic atomization nozzle. A supersonic antigravity siphon atomizer produces a cloud fog curtain composed of high-speed droplets and high-speed air. The particle size of the droplets is less than 10 µ. At the same flow rate of water, its dust removal rate is twice as high as that of ultrasonic nozzles. When the dust removal efficiency is the same, the water consumption of the supersonic siphon atomizer nozzle is 1/2, the air flow rate is 1/3, and the power consumption is 1/2 that of the ultrasonic atomizing nozzles. Siphon atomization can siphon at a total air pressure of 0.2 MPa, and the siphon pressure can reach 0.03 MPa at a total air pressure of 0.4 MPa, which increases with the increase in total inlet air pressure. For the first time, the process of siphoning and nozzle internal atomizing in the field of supersonic atomization dust removal is truly realized. The ultrafine sized droplets with high speeds produced by the new nozzle allow them to cover the limited working space in a shorter time, have a more effective trapping effect for a large number of fine dust particles, and quickly suppress the dust with greater kinetic energy. Therefore, the requirements for the working conditions are reduced, which will save more energy compared to the currently used nozzles available on the market.

2020 ◽  
Vol 63 (5) ◽  
pp. 1493-1497
Author(s):  
Benjamin M. Plumier ◽  
Yumeng Zhao ◽  
Mark E. Casada ◽  
Ronaldo G. Maghirang ◽  
R. P. Kingsly Ambrose

HighlightsFreshly harvested, higher quality corn samples have a higher proportion of small dust particles with a lower circularity and aspect ratio compared to older, lower quality samples.For freshly harvested grain, dust particles removed at low centrifuge speed were significantly rougher than particles removed at high speed.Lower quality corn did not show a significant decrease in particle roughness for strongly attached dust.The surface area decreased while the surface energy increased with the attachment strength of dust particles.Abstract. High dust concentrations associated with grain handling can cause serious problems, including health and safety risks from dust inhalation and increased risk of explosions due to contained suspended dust in the presence of an ignition source. The amount of dust generated during grain handling is influenced by several factors, including the adhesion strength of dust to the grain. One factor that could influence the adhesion strength of grain dusts is how the dust particles are shaped and how their shape relates to the surface texture of corn. To better understand the properties of dust particles separated from corn samples, dust samples were analyzed for morphology and particle size. In addition, dust samples were separated with different centrifugation speeds to compare the properties of dusts that were strongly or weakly attached to the grain. These samples were observed with a light profilometer to measure their surface roughness characteristics. Results showed that freshly harvested corn samples contained a higher presence of small particles with low circularity than older, lower quality samples. The large particles observed were determined to be starch, as opposed to the smaller particles that were more likely soil or other non-plant-based material. The dust particles that were more strongly attached to corn kernels tended to have lower surface roughness than those that were weakly attached for the freshly harvested grain. Keywords: Dust adhesion, Particle shape, Surface adhesion, Surface roughness.


Author(s):  
D. Massini ◽  
T. Fondelli ◽  
B. Facchini ◽  
L. Tarchi ◽  
F. Leonardi

In order to reduce environmental and climate impact from air traffic, the main effort of aero-engine industry and research community is looking at a continuous increase in gearbox efficiency. With this kind of components every source of loss can be responsible for high heat loads; for this reason oil jet systems are used to provide proper cooling and lubrication of gears tooth surfaces. In the design phase it is important to predict the losses increase due to the lubricating oil jet impact on the spur gear, varying the different geometrical and working parameters such as the jet inclination, distance and the oil mass flow rate and temperature. An experimental investigation was carried out on a novel rotating test rig able to reproduce real engine working conditions in terms of speed, pressure and lubrication system, for a single spur gear. The rig consists of an electric spindle driving a shaft with a spur gear clamped on top. The gear is enclosed in a box where different air pressure conditions can be set and monitored. Pressure transducers and T-type thermocouples placed within the test box were used to measure the gear working conditions. The test box is also equipped with several optical accesses allowing flow field measurements or oil jet visualizations. The driving shaft is composed by two parts connected by a bearingless torquemeter equipped with a speedometer in order to perform torque losses and rotating velocity measurements. Tests were performed without the gear first, in order to separate the final value from the friction losses due to the driving shaft. Windage losses were characterized experimentally for every working condition and the results collected in a simple correlation that was used to separate the losses due to air windage from the ones due to the oil injection. An oil control unit allowed to impose the proper oil pressure and temperature conditions and to measure the mass flow rate. The oil jet was delivered by a spraybar placed within the gearbox, the jet to gear distance and relative angle were varied during the experiments. High speed visualizations were also performed for every test condition in order to deepen the physical understanding of the phenomena and to obtain more information on the lubrication capability of every jet condition. A high speed camera was placed in front of the gear exploiting an optical access while a halogen lamp was used to provide the proper lightening necessary due to the very low exposure time of the acquisitions. The wide experimental database provided, allowed the development of a simple numerical model able to well predict every losses contribution at the various working conditions.


2020 ◽  
Vol 38 (8A) ◽  
pp. 1226-1235
Author(s):  
Safa R. Fadhil ◽  
Shukry. H. Aghdeab

Electrical Discharge Machining (EDM) is extensively used to manufacture different conductive materials, including difficult to machine materials with intricate profiles. Powder Mixed Electro-Discharge Machining (PMEDM) is a modern innovation in promoting the capabilities of conventional EDM. In this process, suitable materials in fine powder form are mixed in the dielectric fluid. An equal percentage of graphite and silicon carbide powders have been mixed together with the transformer oil and used as the dielectric media in this work. The aim of this study is to investigate the effect of some process parameters such as peak current, pulse-on time, and powder concentration of machining High-speed steel (HSS)/(M2) on the material removal rate (MRR), tool wear rate (TWR) and the surface roughness (Ra). Experiments have been designed and analyzed using Response Surface Methodology (RSM) approach by adopting a face-centered central composite design (FCCD). It is found that added graphite-silicon carbide mixing powder to the dielectric fluid enhanced the MRR and Ra as well as reduced the TWR at various conditions. Maximum MRR was (0.492 g/min) obtained at a peak current of (24 A), pulse on (100 µs), and powder concentration (10 g/l), minimum TWR was (0.00126 g/min) at (10 A, 100 µs, and 10 g/l), and better Ra was (3.51 µm) at (10 A, 50 µs, and 10 g/l).


2020 ◽  
Vol 38 (9A) ◽  
pp. 1352-1358
Author(s):  
Saad K. Shather ◽  
Abbas A. Ibrahim ◽  
Zainab H. Mohsein ◽  
Omar H. Hassoon

Discharge Machining is a non-traditional machining technique and usually applied for hard metals and complex shapes that difficult to machining in the traditional cutting process. This process depends on different parameters that can affect the material removal rate and surface roughness. The electrode material is one of the important parameters in Electro –Discharge Machining (EDM). In this paper, the experimental work carried out by using a composite material electrode and the workpiece material from a high-speed steel plate. The cutting conditions: current (10 Amps, 12 Amps, 14 Amps), pulse on time (100 µs, 150 µs, 200 µs), pulse off time 25 µs, casting technique has been carried out to prepare the composite electrodes copper-sliver. The experimental results showed that Copper-Sliver (weight ratio70:30) gives better results than commonly electrode copper, Material Removal Rate (MRR) Copper-Sliver composite electrode reach to 0.225 gm/min higher than the pure Copper electrode. The lower value of the tool wear rate achieved with the composite electrode is 0.0001 gm/min. The surface roughness of the workpiece improved with a composite electrode compared with the pure electrode.


Author(s):  
Zhiying He ◽  
Chunjun Chen ◽  
Dongwei Wang ◽  
Chao Deng ◽  
Jia Hu ◽  
...  

Based on the characteristics that the tunnel pressure wave has a fixed-morphologic form when the same train passes through the same tunnel, an applicational approach based on the iterative learning control (ILC) is developed, aiming at overcoming the drawbacks of the traditional strategy for controlling the air pressure variation inside a high-speed train carriage. To achieve the goal, the control system is mathematically modelled. Then, the problem is formulated. The task of suppressing the influence of the tunnel pressure wave on the air pressure inside the carriages is shifted as an ILC problem of tracking the comfort index with varying trial length. The algorithm of refreshing the control signal from trial to trial is determined and the process of ILC control is designed. Next, the convergence of the newly-developed applicational ILC algorithm is discussed and the algorithm is simulated by the simulation signal and field-test signal. Results show that the applicational ILC algorithm be more adaptable in handling the control of the air pressure inside carriage under the excitation of varying-amplitude, varying-scale and varying-initial-states tunnel pressure wave. Meanwhile, the matching with tunnel pressure wave makes the applicational ILC algorithm will take both the riding comfort and fresh air into consideration, which upgrades the performances when the high-speed train passing through long tunnels.


2021 ◽  
pp. 216507992110238
Author(s):  
Hae Ran Kim

Background: Workplace violence (WPV) is a global public health problem and a threat to the health of Korean workers. This study assessed the prevalence and risk factors of WPV and its association with mental and physical health among Korean workers. Methods: Data obtained for 50,205 respondents to the Fifth Korean Working Conditions Survey were utilized for this study. Verbal abuse, threats, physical violence, and sexual harassment were assessed individually and as a composite for “any WPV.” Workers were characterized by education, income, shift work status, access to a health and safety education program, work sector and overall health. Descriptive analyses and multiple logistic regression analyses were used to estimate the prevalence of WPV and its association with mental and physical health. Findings: Overall, 5.6% of workers reported experiencing one of four forms of WPV. The prevalence of verbal abuse, threats, physical violence, and sexual harassment were 4.9%, 0.7%, 0.2%, and 1.1%, respectively. Most perpetrators were customers. Prevalence of WPV was associated with lower education level, poor health status, long working hours, shift work, and no experience of health and safety education; 9.0% of service workers experienced violence. Workers who had experienced WPV were more likely to experience anxiety, sleep-related problems, depressive symptoms, back pain, headache/eye strain, and overall fatigue. Conclusions/Applications to Practice: Workplace violence is a serious occupational and public health concern in Korea. These results suggest managing WPV may improve workers’ well-being and that violence-prevention strategies, policies, and regulations should be implemented across most industries.


2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110208
Author(s):  
Yuan Zhang ◽  
Lifeng Wang ◽  
Yaodong Zhang ◽  
Yongde Zhang

The thermal deformation of high-speed motorized spindle will affect its reliability, so fully considering its thermal characteristics is the premise of optimal design. In order to study the thermal characteristics of high-speed motorized spindles, a coupled model of thermal-flow-structure was established. Through experiment and simulation, the thermal characteristics of spiral cooling motorized spindle are studied, and the U-shaped cooled motorized spindle is designed and optimized. The simulation results show that when the diameter of the cooling channel is 7 mm, the temperature of the spiral cooling system is lower than that of the U-shaped cooling system, but the radial thermal deformation is greater than that of the U-shaped cooling system. As the increase of the channel diameter of U-shaped cooling system, the temperature and radial thermal deformation decrease. When the diameter is 10 mm, the temperature and radial thermal deformation are lower than the spiral cooling system. And as the flow rate increases, the temperature and radial thermal deformation gradually decrease, which provides a basis for a reasonable choice of water flow rate. The maximum error between experiment and simulation is 2°C, and the error is small, which verifies the accuracy and lays the foundation for future research.


2021 ◽  
Vol 11 (4) ◽  
pp. 1700
Author(s):  
Lemiao Qiu ◽  
Huifang Zhou ◽  
Zili Wang ◽  
Shuyou Zhang ◽  
Lichun Zhang ◽  
...  

As the demand for high-speed elevators grows, the requirements of elevator performance have also developed. The high speed will produce strong airflow disturbances and drastic pressure changes, which is prone to cause passenger discomfort. In this paper, an elevator car air pressure compensation method based on coupling analysis of internal and external flow fields (IE-FF) is proposed. It helps to adaptively track the ideal air pressure curve (IAPC) inside the car and controls the air pressure fluctuation to improve the ride comfort of the elevator. To obtain the air pressure transient value in the elevator car, an IE-FF modeling method is proposed. Based on the IE-FF model, the air pressure compensation system is developed. To realize the air pressure compensation inside the car, an adaptive iterative learning control (A-ILC) algorithm is proposed, to eliminate the passengers’ ear pressing due to the severe air pressure fluctuation. To verify the proposed method, the KLK2 (Canny Elevator Co., Ltd., 2015, Suzhou, China) high-speed elevator is applied. The numerical experiment results show that the proposed method has higher tracking accuracy and convergence speed compared to the classical Proportion Integral Differential (PID) algorithm and the Proportion Integral-iterative learning control (PD-ILC) algorithm.


Author(s):  
Afshin Goharzadeh ◽  
Keegan Fernandes

This paper presents an experimental investigation on a modified airlift pump. Experiments were undertaken as a function of air-water flow rate for two submergence ratios (ε=0.58 and 0.74), and two different riser geometries (i) straight pipe with a constant inner diameter of 19 mm and (ii) enlarged pipe with a sudden expanded diameter of 19 to 32 mm. These transparent vertical pipes, of 1 m length, were submerged in a transparent rectangular tank (0.45×0.45×1.1 m3). The compressed air was injected into the vertical pipe to lift the water from the reservoir. The flow map regime is established for both configurations and compared with previous studies. The two phase air-water flow structure at the expansion region is experimentally characterized. Pipeline geometry is found to have a significant influence on the output water flow rate. Using high speed photography and electrical conductivity probes, new flow regimes, such as “slug to churn” and “annular to churn” flow, are observed and their influence on the output water flow rate and efficiency are discussed. These experimental results provide fundamental insights into the physics of modified airlift pump.


2014 ◽  
Vol 590 ◽  
pp. 294-298
Author(s):  
Pichai Janmanee ◽  
Somchai Wonthaisong ◽  
Dollathum Araganont

In this study, effect of machining parameters and wear mechanism in milling process of mold steel AISI-P20 and AISI-1050, using 10 mm twin flute type end mill diameter. The experimental results found that characteristics of milling surfaces and wear of the mill end were directly influenced by changes of parameters for all test conditions. As a result, the quality of milling surfaces also changed. However, mould steels which had the good quality surface is AISI-1050, with roughnesses of 2.120 μm. Quality milling surfaces were milled by using the most suitable parameter feed rate of 45 mm/min, a spindle speed of 637 rpm and a cut depth level of 3 mm, for both grades. Moreover, material removal rate and duration of the milling process, the milling end mills affect wear of the edge in every bite when the feed rate is low, high speed and level depth of cut at least. It was found that limited wear less will affect the surface roughness (Ra) represents the good quality surface.


Sign in / Sign up

Export Citation Format

Share Document