Analysis of Corn Dust Particle Properties and How Surface Roughness Influences Adhesion

2020 ◽  
Vol 63 (5) ◽  
pp. 1493-1497
Author(s):  
Benjamin M. Plumier ◽  
Yumeng Zhao ◽  
Mark E. Casada ◽  
Ronaldo G. Maghirang ◽  
R. P. Kingsly Ambrose

HighlightsFreshly harvested, higher quality corn samples have a higher proportion of small dust particles with a lower circularity and aspect ratio compared to older, lower quality samples.For freshly harvested grain, dust particles removed at low centrifuge speed were significantly rougher than particles removed at high speed.Lower quality corn did not show a significant decrease in particle roughness for strongly attached dust.The surface area decreased while the surface energy increased with the attachment strength of dust particles.Abstract. High dust concentrations associated with grain handling can cause serious problems, including health and safety risks from dust inhalation and increased risk of explosions due to contained suspended dust in the presence of an ignition source. The amount of dust generated during grain handling is influenced by several factors, including the adhesion strength of dust to the grain. One factor that could influence the adhesion strength of grain dusts is how the dust particles are shaped and how their shape relates to the surface texture of corn. To better understand the properties of dust particles separated from corn samples, dust samples were analyzed for morphology and particle size. In addition, dust samples were separated with different centrifugation speeds to compare the properties of dusts that were strongly or weakly attached to the grain. These samples were observed with a light profilometer to measure their surface roughness characteristics. Results showed that freshly harvested corn samples contained a higher presence of small particles with low circularity than older, lower quality samples. The large particles observed were determined to be starch, as opposed to the smaller particles that were more likely soil or other non-plant-based material. The dust particles that were more strongly attached to corn kernels tended to have lower surface roughness than those that were weakly attached for the freshly harvested grain. Keywords: Dust adhesion, Particle shape, Surface adhesion, Surface roughness.

2020 ◽  
Vol 12 (12) ◽  
pp. 168781402097768
Author(s):  
Tian Zhang ◽  
Deji Jing ◽  
Shaocheng Ge ◽  
Jiren Wang ◽  
Xi Chen ◽  
...  

To improve the trapping efficiency of respiratory dust by aerodynamic atomization, reduce the energy consumption and the requirements for the working conditions of nozzles and maintain the health and safety of workers, a comparative experiment evaluating aerodynamic atomization dust removal characteristics was conducted with a self-developed supersonic siphon atomization nozzle, which utilizes a Laval nozzle as the core, and an existing ultrasonic atomization nozzle. The experimental results showed that the new type of nozzle, from the perspectives of droplet speed, conservation of water and pressure, range, and attenuation view, completely surpasses the traditional pneumatic atomization nozzle. A supersonic antigravity siphon atomizer produces a cloud fog curtain composed of high-speed droplets and high-speed air. The particle size of the droplets is less than 10 µ. At the same flow rate of water, its dust removal rate is twice as high as that of ultrasonic nozzles. When the dust removal efficiency is the same, the water consumption of the supersonic siphon atomizer nozzle is 1/2, the air flow rate is 1/3, and the power consumption is 1/2 that of the ultrasonic atomizing nozzles. Siphon atomization can siphon at a total air pressure of 0.2 MPa, and the siphon pressure can reach 0.03 MPa at a total air pressure of 0.4 MPa, which increases with the increase in total inlet air pressure. For the first time, the process of siphoning and nozzle internal atomizing in the field of supersonic atomization dust removal is truly realized. The ultrafine sized droplets with high speeds produced by the new nozzle allow them to cover the limited working space in a shorter time, have a more effective trapping effect for a large number of fine dust particles, and quickly suppress the dust with greater kinetic energy. Therefore, the requirements for the working conditions are reduced, which will save more energy compared to the currently used nozzles available on the market.


2020 ◽  
Vol 38 (9A) ◽  
pp. 1352-1358
Author(s):  
Saad K. Shather ◽  
Abbas A. Ibrahim ◽  
Zainab H. Mohsein ◽  
Omar H. Hassoon

Discharge Machining is a non-traditional machining technique and usually applied for hard metals and complex shapes that difficult to machining in the traditional cutting process. This process depends on different parameters that can affect the material removal rate and surface roughness. The electrode material is one of the important parameters in Electro –Discharge Machining (EDM). In this paper, the experimental work carried out by using a composite material electrode and the workpiece material from a high-speed steel plate. The cutting conditions: current (10 Amps, 12 Amps, 14 Amps), pulse on time (100 µs, 150 µs, 200 µs), pulse off time 25 µs, casting technique has been carried out to prepare the composite electrodes copper-sliver. The experimental results showed that Copper-Sliver (weight ratio70:30) gives better results than commonly electrode copper, Material Removal Rate (MRR) Copper-Sliver composite electrode reach to 0.225 gm/min higher than the pure Copper electrode. The lower value of the tool wear rate achieved with the composite electrode is 0.0001 gm/min. The surface roughness of the workpiece improved with a composite electrode compared with the pure electrode.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 543 ◽  
Author(s):  
Tzu-Yu Peng ◽  
Saiji Shimoe ◽  
Lih-Jyh Fuh ◽  
Chung-Kwei Lin ◽  
Dan-Jae Lin ◽  
...  

Poly(aryl–ether–ketone) materials (PAEKs) are gaining interest in everyday dental practices because of their natural properties. This study aims to analyze the bonding performance of PAEKs to a denture acrylic. Testing materials were pretreated by grinding, sandblasting, and priming prior to polymerization with the denture acrylic. The surface morphologies were observed using a scanning electron microscope and the surface roughness was measured using atomic force microscopy. The shear bond strength (SBS) values were determined after 0 and 2500 thermal cycles. The obtained data were analyzed using a paired samples t-test and Tukey’s honestly significant difference (HSD) test (α = 0.05). The surface characteristics of testing materials after different surface pretreatments showed obvious differences. PAEKs showed lower surface roughness values (0.02–0.03 MPa) than Co-Cr (0.16 MPa) and zirconia (0.22 MPa) after priming and sandblasting treatments (p < 0.05). The SBS values of PAEKs (7.60–8.38 MPa) met the clinical requirements suggested by ISO 10477 (5 MPa). Moreover, PAEKs showed significantly lower SBS reductions (p < 0.05) after thermal cycling fatigue testing compared to Co-Cr and zirconia. Bonding performance is essential for denture materials, and our results demonstrated that PAEKs possess good resistance to thermal cycling fatigue, which is an advantage in clinical applications. The results imply that PAEKs are potential alternative materials for the removable of prosthetic frameworks.


2015 ◽  
Vol 67 (2) ◽  
pp. 172-180 ◽  
Author(s):  
Mumin Sahin ◽  
Cenk Misirli ◽  
Dervis Özkan

Purpose – The purpose of this paper is to examine mechanical and metallurgical properties of AlTiN- and TiN-coates high-speed steel (HSS) materials in detail. Design/methodology/approach – In this study, HSS steel parts have been processed through machining and have been coated with AlTiN and TiN on physical vapour deposition workbench at approximately 6,500°C for 4 hours. Tensile strength, fatigue strength, hardness tests for AlTiN- and TiN-coated HSS samples have been performed; moreover, energy dispersive X-ray spectroscopy and X-ray diffraction analysis and microstructure analysis have been made by scanning electron microscopy. The obtained results have been compared with uncoated HSS components. Findings – It was found that tensile strength of TiAlN- and TiN-coated HSS parts is higher than that of uncoated HSS parts. Highest tensile strength has been obtained from TiN-coated HSS parts. Number of cycles for failure of TiAlN- and TiN-coated HSS parts is higher than that for HSS parts. Particularly TiN-coated HSS parts have the most valuable fatigue results. However, surface roughness of fatigue samples may cause notch effect. For this reason, surface roughness of coated HSS parts is compared with that of uncoated ones. While the average surface roughness (Ra) of the uncoated samples was in the range of 0.40 μm, that of the AlTiN- and TiN-coated samples was in the range of 0.60 and 0.80 μm, respectively. Research limitations/implications – It would be interesting to search different coatings for cutting tools. It could be the good idea for future work to concentrate on wear properties of tool materials. Practical implications – The detailed mechanical and metallurgical results can be used to assess the AlTiN and TiN coating applications in HSS materials. Originality/value – This paper provides information on mechanical and metallurgical behaviour of AlTiN- and TiN-coated HSS materials and offers practical help for researchers and scientists working in the coating area.


2012 ◽  
Vol 2012 ◽  
pp. 1-28 ◽  
Author(s):  
Phil Ligrani

The influences of a variety of different physical phenomena are described as they affect the aerodynamic performance of turbine airfoils in compressible, high-speed flows with either subsonic or transonic Mach number distributions. The presented experimental and numerically predicted results are from a series of investigations which have taken place over the past 32 years. Considered are (i) symmetric airfoils with no film cooling, (ii) symmetric airfoils with film cooling, (iii) cambered vanes with no film cooling, and (iv) cambered vanes with film cooling. When no film cooling is employed on the symmetric airfoils and cambered vanes, experimentally measured and numerically predicted variations of freestream turbulence intensity, surface roughness, exit Mach number, and airfoil camber are considered as they influence local and integrated total pressure losses, deficits of local kinetic energy, Mach number deficits, area-averaged loss coefficients, mass-averaged total pressure loss coefficients, omega loss coefficients, second law loss parameters, and distributions of integrated aerodynamic loss. Similar quantities are measured, and similar parameters are considered when film-cooling is employed on airfoil suction surfaces, along with film cooling density ratio, blowing ratio, Mach number ratio, hole orientation, hole shape, and number of rows of holes.


2012 ◽  
Vol 576 ◽  
pp. 60-63 ◽  
Author(s):  
N.A.H. Jasni ◽  
Mohd Amri Lajis

Hard milling of hardened steel has wide application in mould and die industries. However, milling induced surface finish has received little attention. An experimental investigation is conducted to comprehensively characterize the surface roughness of AISI D2 hardened steel (58-62 HRC) in end milling operation using TiAlN/AlCrN multilayer coated carbide. Surface roughness (Ra) was examined at different cutting speed (v) and radial depth of cut (dr) while the measurement was taken in feed speed, Vf and cutting speed, Vc directions. The experimental results show that the milled surface is anisotropic in nature. Surface roughness values in feed speed direction do not appear to correspond to any definite pattern in relation to cutting speed, while it increases with radial depth-of-cut within the range 0.13-0.24 µm. In cutting speed direction, surface roughness value decreases in the high speed range, while it increases in the high radial depth of cut. Radial depth of cut is the most influencing parameter in surface roughness followed by cutting speed.


2014 ◽  
Vol 989-994 ◽  
pp. 3331-3334
Author(s):  
Tao Zhang ◽  
Guo He Li ◽  
L. Han

High speed milling is a newly developed advanced manufacturing technology. Surface integrity is an important object of machined parts. Surface roughness is mostly used to evaluate to the surface integrity. A theoretical surface roughness model for high face milling was established. The influence of cutting parameters on the surface roughness is analyzed. The surface roughness decreases when the cutter radius increases, total number of tooth and rotation angular speed, while it increases with the feeding velocity. The high speed face milling can get a smooth surface and it can replace the grinding with higher efficiency.


Author(s):  
Adel Abidi ◽  
Sahbi Ben Salem ◽  
Mohamed Athmane Yallese

Among advanced cutting methods, High Speed Milling (HSM) is often recommended to improve the productivity and to reduce the costs of machining parts. As every cutting process, HSM is characterized by some defects like surface roughness and delamination are the main defects generated in composite materials. The aim of this experimental work is the studying of the machining quality of woven Carbon fiber reinforced plastics (CFRP) using the HSM technology. Experiments were done using different machining parameters combinations to make opened holes in CFRP laminates. This study investigated the effect of cutting speed, orbital feed speed, hole diameter on the delamination defect and surface roughness responses generated in the drilled holes. The design of experimental tests was generated using the approach of Central Composite Design (CCD). The characterization of these responses was treated with the Analysis of variance (ANOVA) and Response surface methodology (RSM). Results showed that the surface roughness is highly affected by the orbital feed speed (F) with contribution of 22.45%. The delamination factor at entry and exit of holes is strongly influenced by the hole diameter D (25.97% and 57.43%) respectively. The developed model equations gave a good correlation between the empirical and predicted results. The optimization of the milling parameters was treated using desirability function to minimize the surface roughness (Ra) and the delamination factor simultaneously.


2018 ◽  
Vol 30 (18) ◽  
pp. 1705683 ◽  
Author(s):  
Xiangfan Chen ◽  
Wenzhong Liu ◽  
Biqin Dong ◽  
Jongwoo Lee ◽  
Henry Oliver T. Ware ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document