scholarly journals Polymeric nanocomposites reinforced with nanowires: Opening doors to future applications

2018 ◽  
Vol 35 (1) ◽  
pp. 65-98 ◽  
Author(s):  
Ayesha Kausar

This article presents a state-of-the-art overview on indispensable aspects of polymer/nanowire nanocomposites. Nanowires created from polymers, silver, zinc, copper, nickel, and aluminum have been used as reinforcing agents in conducting polymers and non-conducting thermoplastic/thermoset matrices such as polypyrrole, polyaniline, polythiophene, polyurethane, acrylic polymers, polystyrene, epoxy and rubbers. This review presents the combined influence of polymer matrix and nanowires on the nanocomposite characteristics. This review shows how the nanowire, the nanofiller content, the matrix type and processing conditions affect the final nanocomposite properties. The ensuing multifunctional polymer/nanowire nanocomposites have high strength, conductivity, thermal stability, and other useful photovoltaic, piezo, and sensing properties. The remarkable nanocomposite characteristics have been ascribed to the ordered nanowire structure and the development of a strong interface between the matrix/nanofiller. This review also refers to cutting edge application areas of polymer/nanowire nanocomposites such as solar cells, light emitting diodes, supercapacitors, sensors, batteries, electromagnetic shielding materials, biomaterials, and other highly technical fields. Modifying nanowires and incorporating them in a suitable polymer matrix can be adopted as a powerful future tool to create useful technical applications.

2016 ◽  
Vol 138 (2) ◽  
Author(s):  
Bin Xie ◽  
Run Hu ◽  
Xiaobing Luo

Recent years, semiconductor quantum dots (QDs) have attracted tremendous attentions for their unique characteristics for solid-state lighting (SSL) and thin-film display applications. The pure and tunable spectra of QDs make it possible to simultaneously achieve excellent color-rendering properties and high luminous efficiency (LE) when combining colloidal QDs with light-emitting diodes (LEDs). Due to its solution-based synthetic route, QDs are impractical for fabrication of LED. QDs have to be incorporated into polymer matrix, and the mixture is dispensed into the LED mold or placed onto the LED to fabricate the QD–LEDs, which is known as the packaging process. In this process, the compatibility of QDs' surface ligands with the polymer matrix should be ensured, otherwise the poor compatibility can lead to agglomeration or surface damage of QDs. Besides, combination of QDs–polymer with LED chip is a key step that converts part of blue light into other wavelengths (WLs) of light, so as to generate white light in the end. Since QD-LEDs consist of three or more kinds of QDs, the spectra distribution should be optimized to achieve a high color-rendering ability. This requires both theoretical spectra optimization and experimental validation. In addition, to prolong the reliability and lifetime of QD-LEDs, QDs have to be protected from oxygen and moisture penetration. And the heat generation inside the package should be well controlled because high temperature results in QDs' thermal quenching, consequently deteriorates QD-LEDs' performance greatly. Overall, QD-LEDs' packaging and applications present the above-mentioned technical challenges. A profound and comprehensive understanding of these problems enables the advancements of QD-LEDs' packaging processes and designs. In this review, we summarized the recent progress in the packaging of QD-LEDs. The wide applications of QD-LEDs in lighting and display were overviewed, followed by the challenges and the corresponding progresses for the QD-LEDs' packaging. This is a domain in which significant progress has been achieved in the last decade, and reporting on these advances will facilitate state-of-the-art QD-LEDs' packaging and application technologies.


2020 ◽  
Vol 54 (22) ◽  
pp. 3189-3203 ◽  
Author(s):  
Hamed Bahramnia ◽  
Hamidreza Mohammadian Semnani ◽  
Ali Habibolahzadeh ◽  
Hassan Abdoos

Offshore pipelines are vulnerable against erosion/wear deterioration mechanisms that can be controlled through the use of proper surface coatings, such as polymer matrix nano-composite (PMNC) coatings that are well-known for their ease of production, availability and applicability. Epoxy, as a versatile rigid and brittle resin and polyurethane with proper chemical/mechanical properties, are potential candidates to make the matrix of these composites. A combination of these polymers can also enhance the mechanical behaviors, glass transition temperature and flexibility. In addition, the desired coating characteristics, such as adhesion to metal substrate, mechanical properties, erosion/wear resistivity and UV absorbance, can be further improved through the addition of appropriate nanoparticles within the polymer matrix. Especially, nanoparticles can improve the erosion/wear resistance of polymers because of establishing high strength bonds between the polymer chains and the reinforcements besides enhancing other required properties. The present work is a review on PMNC coatings that contain epoxy, polyurethane or EP/polyurethane as a polymer matrix along with the details of the nanoparticle reinforcements, such as alumina, silica, titanium oxide, zinc oxide, clay and carbon-based materials. The effect of these nanoparticles on the properties of composite coatings has also been investigated.


2020 ◽  
Vol 62 (8) ◽  
pp. 1333
Author(s):  
О.П. Чикалова-Лузина ◽  
В.М. Вяткин ◽  
И.П. Щербаков ◽  
А.Н. Алешин

The mechanisms of radiative recombination and electroluminescence (EL) in structures based on CsPbBr3 perovskite nanocrystal (NC) films in the matrix of semiconductor polymer MEH-PPV are considered. It has been shown that two mechanisms determine the EL intensity in light emitting field effect transistors (LE-FETs) with active layers based on MEH-PPV: CsPbBr3 (NC) films: recombination of charged carriers injected into the polymer matrix and recombination at the polymer / NC perovskite interface. The results of theoretical and experimental studies have shown that the superlinear dependence of the EL intensity on the level of electrical excitation in LE-FETs based on MEH-PPV: CsPbBr3 (NC) is due to the mechanism of electron tunneling through the potential barrier at the electrode.


Cellulose ◽  
2021 ◽  
Author(s):  
Koki Matsumoto ◽  
Tatsuya Tanaka ◽  
Masahiro Sasada ◽  
Noriyuki Sano ◽  
Kenta Masuyama

AbstractThis study focused on realizing fire retardancy for polymer composites by using a cellulosic biofiller and ammonium polyphosphate (APP). The motivation of this study was based on revealing the mechanism of the synergetic effect of a cellulosic biofiller and APP and determining the parameters required for achieving a V-0 rating in UL94 standard regardless of the kind of polymer system used. As for the polymer matrix, polypropylene and polylactic acid were used. The flammability, burning behavior and thermal decomposition behavior of the composites were investigated through a burning test according to the UL-94 standard, cone calorimetric test and thermogravimetric analysis. As a result, the incorporation of a high amount of cellulose enabled a V-0 rating to be achieved with only a small amount of APP despite the variation of the optimum cellulose loading between the matrix polymers. Through analysis, the results indicated that APP decreased the dehydration temperature of cellulose. Furthermore, APP promoted the generation of enough water as a nonflammable gas and formed enough char until the degradation of the polymer matrix was complete. The conditions required to achieve the V-0 rating were suggested against composites incorporating APP and biofillers. Furthermore, the suggested conditions were validated by using polyoxymethylene as a highly flammable polymer.


2021 ◽  
Vol 65 (4) ◽  
pp. 643-651
Author(s):  
Th. Nitschke-Pagel ◽  
J. Hensel

AbstractThe consideration of residual stresses in fatigue-loaded welds is currently done only qualitatively without reliable knowledge about their real distribution, amount and prefix. Therefore, the tools which enable a more or less unsafe consideration in design concepts are mainly based on unsafe experiences and doubtful assumptions. Since the use of explicitly determined residual stresses outside the welding community is state of the art, the target of the presented paper is to show a practicable way for an enhanced consideration of residual stresses in the current design tools. This is not only limited on residual stresses induced by welding, but also on post-weld treatment processes like HFMI or shot peening. Results of extended experiments with longitudinal fillet welds and butt welds of low and high strength steels evidently show that an improved use of residual stresses in fatigue strength approximation enables a better evaluation of peening processes as well as of material adjusted welding procedures or post-weld stress relief treatments. The concept shows that it is generally possible to overcome the existing extremely conservative but although unsafe rules and regulations and may also enable the improved use of high strength steels.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1719
Author(s):  
Patryk Fryń ◽  
Sebastian Lalik ◽  
Natalia Górska ◽  
Agnieszka Iwan ◽  
Monika Marzec

The main goal of this paper was to study the dielectric properties of hybrid binary and ternary composites based on biodegradable polymer Ecoflex®, single walled carbon nanotubes (SWCN), and liquid crystalline 4′-pentyl-4-biphenylcarbonitrile (5CB) compound. The obtained results were compared with other created analogically to Ecoflex®, hybrid layers based on biodegradable polymers such as L,D-polylactide (L,D-PLA) and polycaprolactone (PCL). Frequency domain dielectric spectroscopy (FDDS) results were analyzed taking into consideration the amount of SWCN, frequency, and temperature. For pure Ecoflex®, two relaxation processes (α and β) were identified. It was shown that the SWCN admixture (in the weight ratio 10:0.01) did not change the properties of the Ecoflex® layer, while in the case of PCL and L,D-PLA, the layers became conductive. The dielectric constant increased with an increase in the content of SWCN in the Ecoflex® matrix and the conductive behavior was not visible, even for the greatest concentration (10:0.06 weight ratio). In the case of the Ecoflex® polymer matrix, the conduction relaxation process at a frequency ca. several kilohertz appeared and became stronger with an increase in the SWCN admixture in the matrix. Addition of oleic acid to the polymer matrix had a smaller effect on the increase in the dielectric response than the addition of liquid crystal 5CB. Fourier transform infrared (FTIR) results revealed that the molecular structure and chemical character of the Ecoflex® and PCL matrixes remained unchanged upon the addition of SWCN or 5CB in a weight ratio of 10:0.01 and 10:1, respectively, while molecular interactions appeared between L,D-PLA and 5CB. Moreover, adding oleic acid to pure Ecoflex® as well as the binary and ternary hybrid layers with SWCN and/or 5CB in a weight ratio of Ecoflex®:oleic acid equal to 10:0.3 did not have an influence on the chemical bonding of these materials.


2012 ◽  
Vol 510-511 ◽  
pp. 577-584 ◽  
Author(s):  
A. Quddos ◽  
Mohammad Bilal Khan ◽  
R.N. Khan ◽  
M.K.K. Ghauri

The impregnation of the fiber with a resin system, the polymeric matrix with the interface needs to be properly cured so that the dimensional stability of the matrix and the composite is ensured. A modified epoxy resin matrix was obtained with a reactive toughening agent and anhydride as a curing agent. The mechanical properties of the modified epoxy matrix and its fiber reinforced composites were investigated systematically. The polymeric matrix possessed many good properties, including high strength, high elongation at break, low viscosity, long pot life at room temperature, and good water resistance. The special attentions are given to the matrix due to its low out gassing, low water absorption and radiation resistance. In addition, the fiber-reinforced composites showed a high strength conversion ratio of the fiber and good fatigue resistance. The dynamic and static of the composite material were studied by thermo gravimetric analysis (TGA), Differential Scanning Calorimetry (DSC) and Scanning Electron Microscopy (SEM) with EDX. The influences of processing technique such as curing and proper mixing on the mechanical and interfacial properties were determined. The results demonstrated that the modified epoxy resin matrix is very suitable for applications in products fabricated with fiber-reinforced composites.


Author(s):  
Christian Felber ◽  
Florian Rödl ◽  
Ferdinand Haider

Abstract The most promising metal processing additive manufacturing technique in industry is selective laser melting, but only a few alloys are commercially available, limiting the potential of this technique. In particular high strength aluminum alloys, which are of great importance in the automotive industry, are missing. An aluminum 2024 alloy, reinforced by Ti-6Al-4V and B4C particles, could be used as a high strength alternative for aluminum alloys. Heat treating can be used to improve the mechanical properties of the metal matrix composite. Dynamic scanning calorimetry shows the formation of Al2Cu precipitates in the matrix instead of the expected Al2CuMg phases due to the loss of magnesium during printing, and precipitation processes are accelerated due to particle reinforcement and additive manufacturing. Strong reactions between aluminum and Ti-6Al-4V are observed in the microstructure, while B4C shows no reaction with the matrix or the titanium. The material shows high hardness, high stiffness, and low ductility through precipitation and particle reinforcement.


1987 ◽  
Vol 114 ◽  
Author(s):  
Sean Wise ◽  
Kevan Jones ◽  
Claudio Herzfeld ◽  
David D. Double

ABSTRACTVery high strength castable chemically bonded ceramic (CBC) materials have been prepared which consist of finely chopped steel fibers and steel aggregate in a silica modified portland cement matrix. This paper examines the effect of metal fiber addition on compressive and flexural strengths. The overall chemistry of the matrix is held constant but the morphological form of silica used and the cure conditions are altered to examine their effect. Compressive strengths in excess of 500 MPa and flexural strengths in excess of 80 MPa can be obtained.It is found that flexural strength increases proportionally with fiber content over the range of 0 to 10% by volume. Compressive strengths are not affected. Use of silica fume in the mixes produces higher strengths at low temperatures than mixes which contain only crystalline silica. High temperature curing/drying (400°C), which produces the highest strengths, produces equivalent properties for formulations with and without silica fume. Higher water/cement ratios are found to reduce compressive strengths but have relatively little effect on the flexural properties.


Sign in / Sign up

Export Citation Format

Share Document