scholarly journals Microscopic and spectroscopic investigation of the calcite surface interacted with Hg(II) in aqueous solutions

2003 ◽  
Vol 67 (6) ◽  
pp. 1193-1204 ◽  
Author(s):  
A. Godelitsas ◽  
J. M. Astilleros ◽  
K. R. Hallam ◽  
J. Löns ◽  
A. Putnis

AbstractThe interaction of the {101̄4} cleavage surface of calcite with Hg(CH3COO)2 aqueous solutions with concentration of 5 mM Hg(II) (pH ≈3.5), was investigated using microscopic and spectroscopic techniques. In situ atomic force microscopy experiments showed that surface microtopography changes significantly as a result of the interaction, and that the initial rhombic etch pits induced by H2O dissolution are rapidly transformed to deeper etch pits exhibiting an unusual triangular shape. The growth of these etch pits is strongly anisotropic, moving faster along the [22̄1] direction than along the [010] direction (with step-retreat velocities of ∼12 nm s –1 and ∼4 nm s–1, respectively). The modified etch pits are due to Hg(II) sorption in the surface, rather than due to the effect of the acetate anion. The sorption (adsorption and probably absorption also) of Hg(II), in the first minutes of the interaction, is shown by X-ray photoelectron spectroscopy. After ∼2 h, the triangular etch pits are interconnected to form larger hexagonal etch pits, while Hg(II)-bearing phases (confirmed later by SEM-EDS) grow onto the surface through a heterogeneous nucleation process. The crystal growth of orthorhombic (montroydite-type) hydrated Hg(II) oxide (HgO·nH2O) on the surface of calcite was confirmed by XRD patterns and FT-IR spectra from samples exposed for longer times to Hg(CH3COO)2 solution.

Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2075
Author(s):  
Diego Gomez-Maldonado ◽  
Iris Beatriz Vega Erramuspe ◽  
Ilari Filpponen ◽  
Leena-Sisko Johansson ◽  
Salvatore Lombardo ◽  
...  

With increasing global water temperatures and nutrient runoff in recent decades, the blooming season of algae lasts longer, resulting in toxin concentrations that exceed safe limits for human consumption and for recreational use. From the different toxins, microcystin-LR has been reported as the main cyanotoxin related to liver cancer, and consequently its abundance in water is constantly monitored. In this work, we report a methodology for decorating cellulose nanofibrils with β-cyclodextrin or with poly(β-cyclodextrin) which were tested for the recovery of microcystin from synthetic water. The adsorption was followed by Quartz Crystal Microbalance with Dissipation monitoring (QCM-D), allowing for real-time monitoring of the adsorption behavior. A maximum recovery of 196 mg/g was obtained with the modified by cyclodextrin. Characterization of the modified substrate was confirmed with Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Photoelectron Spectroscopy (XPS), Thermogravimetric Analysis (TGA), and Atomic Force Microscopy (AFM).


2020 ◽  
Vol 21 (17) ◽  
pp. 6154
Author(s):  
Barbara Gieroba ◽  
Anna Sroka-Bartnicka ◽  
Paulina Kazimierczak ◽  
Grzegorz Kalisz ◽  
Izabela S. Pieta ◽  
...  

In order to determine the effect of different gelation temperatures (80 °C and 90 °C) on the structural arrangements in 1,3-β-d-glucan (curdlan) matrices, spectroscopic and microscopic approaches were chosen. Attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) and Raman spectroscopy are well-established techniques that enable the identification of functional groups in organic molecules based on their vibration modes. X-ray photoelectron spectroscopy (XPS) is a quantitative analytical method utilized in the surface study, which provided information about the elemental and chemical composition with high surface sensitivity. Contact angle goniometer was applied to evaluate surface wettability and surface free energy of the matrices. In turn, the surface topography characterization was obtained with the use of atomic force microscopy (AFM) and scanning electron microscopy (SEM). Described techniques may facilitate the optimization, modification, and design of manufacturing processes (such as the temperature of gelation in the case of the studied 1,3-β-d-glucan) of the organic polysaccharide matrices so as to obtain biomaterials with desired characteristics and wide range of biomedical applications, e.g., entrapment of drugs or production of biomaterials for tissue regeneration. This study shows that the 1,3-β-d-glucan polymer sample gelled at 80 °C has a distinctly different structure than the matrix gelled at 90 °C.


2005 ◽  
Vol 23 (1) ◽  
pp. 27-35 ◽  
Author(s):  
Hou Qing-Feng ◽  
Lu Xian-Cai ◽  
Hu Bo-Xing ◽  
Shen Jian

Techniques including thermogravimetry (TG), Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were applied to characterize the adsorption behaviour of Tween80 on graphite. TG is a suitable method for determining the amount of Tween80 adsorbed since it is not restricted by the large amount of solvent adsorbed in this disperse system. The results indicate that TG may provide an alternative method for measuring the amount adsorbed in some disperse systems in which there are significant differences between the thermal behaviours of the adsorbate, adsorbent and solvent. The adsorption isotherms of Tween80 were of the Langmuir type, with the adsorbed amount attaining a maximum value at temperatures between 30°C and 50°C. XPS and FT-IR measurements were used to provide detailed information about the functional group shift. In addition, AFM images indicated that the adsorption of Tween80 has a considerable influence on the topography of graphite, with the adsorbate being adsorbed preferentially on the step defect sites at the edge of the graphite crystal.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7315
Author(s):  
Qinghua Xu ◽  
Xiaodi Huang ◽  
Lukuan Guo ◽  
Yu Wang ◽  
Liqiang Jin

In this work, the amino-functionalized cellulose nanocrystal (ACNC) was prepared using a green route and applied as a biosorbent for adsorption of Cr(VI), Pb2+, and Cu2+ from aqueous solutions. CNC was firstly oxidized by sodium periodate to yield the dialdehyde nanocellulose (DACNC). Then, DACNC reacted with diethylenetriamine (DETA) to obtain amino-functionalized nanocellulose (ACNC) through a Schiff base reaction. The properties of DACNC and ACNC were characterized by using elemental analysis, Fourier transform infrared spectroscopy (FT-IR), Kaiser test, atomic force microscopy (AFM), X-ray diffraction (XRD), and zeta potential measurement. The presence of free amino groups was evidenced by the FT-IR results and Kaiser test. ACNCs exhibited an amphoteric nature with isoelectric points between pH 8 and 9. After the chemical modification, the cellulose I polymorph of nanocellulose remained, while the crystallinity decreased. The adsorption behavior of ACNC was investigated for the removal of Cr(VI), Pb2+, and Cu2+ in aqueous solutions. The maximum adsorption capacities were obtained at pH 2 for Cr(VI) and pH 6 for Cu2+ and Pb2+, respectively. The adsorption all followed pseudo second-order kinetics and Sips adsorption isotherms. The estimated adsorption capacities for Cr(VI), Pb2+, and Cu2+ were 70.503, 54.115, and 49.600 mg/g, respectively.


2003 ◽  
Vol 780 ◽  
Author(s):  
C. Essary ◽  
V. Craciun ◽  
J. M. Howard ◽  
R. K. Singh

AbstractHf metal thin films were deposited on Si substrates using a pulsed laser deposition technique in vacuum and in ammonia ambients. The films were then oxidized at 400 °C in 300 Torr of O2. Half the samples were oxidized in the presence of ultraviolet (UV) radiation from a Hg lamp array. X-ray photoelectron spectroscopy, atomic force microscopy, and grazing angle X-ray diffraction were used to compare the crystallinity, roughness, and composition of the films. It has been found that UV radiation causes roughening of the films and also promotes crystallization at lower temperatures.Furthermore, increased silicon oxidation at the interface was noted with the UVirradiated samples and was shown to be in the form of a mixed layer using angle-resolved X-ray photoelectron spectroscopy. Incorporation of nitrogen into the film reduces the oxidation of the silicon interface.


2020 ◽  
Vol 59 (1) ◽  
pp. 207-214 ◽  
Author(s):  
Yao Wang ◽  
Jianqing Feng ◽  
Lihua Jin ◽  
Chengshan Li

AbstractWe have grown Cu2O films by different routes including self-oxidation and metal-organic deposition (MOD). The reduction efficiency of Cu2O films on graphene oxide (GO) synthesized by modified Hummer’s method has been studied. Surface morphology and chemical state of as-prepared Cu2O film and GO sheets reduced at different conditions have also been investigated using atomic force microscopy (AFM) and x-ray photoelectron spectroscopy (XPS). Results show that self-oxidation Cu2O film is more effective on phtocatalytic reduction of GO than MOD-Cu2O film. Moreover, reduction effect of self-oxidation Cu2O film to GO is comparable to that of environmental-friendly reducing agent of vitamin C. The present results offer a potentially eco-friendly and low-cost approach for the manufacture of reduced graphene oxide (RGO) by photocatalytic reduction.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1088
Author(s):  
Yuki Gunjo ◽  
Hajime Kamebuchi ◽  
Ryohei Tsuruta ◽  
Masaki Iwashita ◽  
Kana Takahashi ◽  
...  

The structural and electronic properties of interfaces composed of donor and acceptor molecules play important roles in the development of organic opto-electronic devices. Epitaxial growth of organic semiconductor molecules offers a possibility to control the interfacial structures and to explore precise properties at the intermolecular contacts. 5,6,11,12-tetraazanaphthacene (TANC) is an acceptor molecule with a molecular structure similar to that of pentacene, a representative donor material, and thus, good compatibility with pentacene is expected. In this study, the physicochemical properties of the molecular interface between TANC and pentacene single crystal (PnSC) substrates were analyzed by atomic force microscopy, grazing-incidence X-ray diffraction (GIXD), and photoelectron spectroscopy. GIXD revealed that TANC molecules assemble into epitaxial overlayers of the (010) oriented crystallites by aligning an axis where the side edges of the molecules face each other along the [1¯10] direction of the PnSC. No apparent interface dipole was found, and the energy level offset between the highest occupied molecular orbitals of TANC and the PnSC was determined to be 1.75 eV, which led to a charge transfer gap width of 0.7 eV at the interface.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1814
Author(s):  
Plinio Mendes Senna ◽  
Carlos Fernando de Almeida Barros Mourão ◽  
Rafael Coutinho Mello-Machado ◽  
Kayvon Javid ◽  
Pietro Montemezzi ◽  
...  

Silane-coating strategy has been used to bind biological compounds to the titanium surface, thereby making implant devices biologically active. However, it has not been determined if the presence of the silane coating itself is biocompatible to osseointegration. The aim of the present study was to evaluate if silane-coating affects bone formation on titanium using a rabbit model. For this, titanium screw implants (3.75 by 6 mm) were hydroxylated in a solution of H2SO4/30% H2O2 for 4 h before silane-coating with 3-aminopropyltriethoxysilane (APTES). A parallel set of titanium screws underwent only the hydroxylation process to present similar acid-etched topography as a control. The presence of the silane on the surface was checked by x-ray photoelectron spectroscopy (XPS), with scanning electron microscopy (SEM) and atomic force microscopy (AFM). A total of 40 titanium screws were implanted in the tibia of ten New Zealand rabbits in order to evaluate bone-to-implant contact (BIC) after 3 weeks and 6 weeks of healing. Silane-coated surface presented higher nitrogen content in the XPS analysis, while micro- and nano-topography of the surface remained unaffected. No difference between the groups was observed after 3 and 6 weeks of healing (p > 0.05, independent t-test), although an increase in BIC occurred over time. These results indicate that silanization of a titanium surface with APTES did not impair the bone formation, indicating that this can be a reliable tool to anchor osteogenic molecules on the surface of implant devices.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 878
Author(s):  
Krystyna Wnuczek ◽  
Andrzej Puszka ◽  
Łukasz Klapiszewski ◽  
Beata Podkościelna

This study presents the preparation and the thermo-mechanical characteristics of polymeric blends based on di(meth)acrylates monomers. Bisphenol A glycerolate diacrylate (BPA.GDA) or ethylene glycol dimethacrylate (EGDMA) were used as crosslinking monomers. Methyl methacrylate (MMA) was used as an active solvent in both copolymerization approaches. Commercial polycarbonate (PC) was used as a modifying soluble additive. The preparation of blends and method of polymerization by using UV initiator (Irqacure® 651) was proposed. Two parallel sets of MMA-based materials were obtained. The first included more harmless linear hydrocarbons (EGDMA + MMA), whereas the second included the usually used aromatic copolymers (BPA.GDA + MMA). The influence of different amounts of PC on the physicochemical properties was discussed in detail. Chemical structures of the copolymers were confirmed by attenuated total reflection–Fourier transform infrared (ATR/FT-IR) spectroscopy. Thermo-mechanical properties of the synthesized materials were investigated by means of differential scanning calorimetry (DSC), thermogravimetric (TG/DTG) analyses, and dynamic mechanical analysis (DMA). The hardness of the obtained materials was also tested. In order to evaluate the surface of the materials, their images were obtained with the use of atomic force microscopy (AFM).


2011 ◽  
Vol 480-481 ◽  
pp. 1065-1069
Author(s):  
Bin Liu ◽  
Lin Wang ◽  
Yin Zhong Bu ◽  
Sheng Rong Yang ◽  
Jin Qing Wang

Titanium (Ti) and its alloys have been applied in orthopedics as one of the most popular biomedical metallic implant materials. In this work, to enhance the bioactivity, the surface of Ti alloy pre-modified by silane coupling agent and glutaraldehyde was covalently grafted with chitosan (CS) via biochemical multistep self-assembled method. Then, for the first time, the achieved surface was further immobilized with casein phosphopeptides (CPP), which are one group of bioactive peptides released from caseins in the digestive tract and can facilitate the calcium adsorption and usage, to form CS-CPP biocomposite coatings. The structure and composition of the fabricated coatings were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and atomic force microscopy (AFM). As the experimental results indicated, multi-step assembly was successfully performed, and the CS and CPP were assembled onto the Ti alloy surface orderly. It is anticipated that the Ti alloys modified by CS-CPP biocomposite coatings will find potential applications as implant materials in biomedical fields.


Sign in / Sign up

Export Citation Format

Share Document