Halloysite nanotubes as a new drug-delivery system: a review

Clay Minerals ◽  
2016 ◽  
Vol 51 (3) ◽  
pp. 469-477 ◽  
Author(s):  
Muhammad Hanif ◽  
Fazila Jabbar ◽  
Sana Sharif ◽  
Ghulam Abbas ◽  
Athar Farooq ◽  
...  

AbstractNew drug-delivery systems have remained a challenge for pharmaceutical scientists due to the use of expensive polymers and the low loading capacity of prepared nanoparticles. There is pressure to develop formulations that contain not only cheaper materials but also have controlled-release properties. Halloysite nanotubes (HNTs) are a naturally occurring clay mineral similar to kaolin, possessing a special particle shape in the form of an ultramicroscopic multilayered hollow cylinder. Its uses encompass a wide range in anticancer therapy, sustained- and controlled-release drug-delivery systems, cosmetics, delivery of proteins, vaccines and genes. These advantages are due to its biocompatibility, significant mechanical strength and natural availability. The surfaces of the tubules can be modified by coating different polymers for application in the drug-delivery system. This review is focused on the various aspects of HNTs such as structure, properties, loading methods, applications and characterizations.

Author(s):  
Pradeep Kumar S ◽  
Prathibha D ◽  
Gowri Shankar N L ◽  
Parthibarajan R ◽  
Mastyagiri L ◽  
...  

Carbon nanotubes, which are elongated fullerenes, resemble graphite sheets wrapped into cylinders with a high length-to-width ratio (few nm in diameter and up to 1 mm in length). Carbon nanotubes are molecular-scale tubes of graphitic carbon with outstanding properties. Carbon nanotubes have drawn great interest and attraction in the field of novel drug delivery system. Nanomedicines can target, diagnose, monitor and treat cancerous cell also. The small nanoscale dimension and astonishing properties make them a distinctive carrier with a wide range of promising applications. These cylindrical carbon molecules have novel properties that make them potentially useful in many applications in nanotechnology. The various nano-size carrier systems are available for biotechnological applications including the drug delivery. Carbon nanotubes are typically used for bioactive delivery due to their some unique outstanding properties. Carbon nanotubes drug delivery system opens up new potential and possibilities over nanoparticles, dendrimers, liposomes etc. for biomedical applications and new drug delivery. In last few years, Carbon nanotubes (CNTs) have shown unexpected advantages in the field of cancer treatment and drug delivery systems. Present review article discuss in brief about the methods of synthesis, with purification as well as sorting techniques for giving different grades to different types of CNTs and biomedical applications. These show very good adsorption properties which helps in the detection of various chemicals, toxic agents etc. Research done using CNTs for cancer treatment is also discussed in brief.  


2019 ◽  
Vol 9 (1) ◽  
pp. 279-285 ◽  
Author(s):  
Priyanka Chaurasiya ◽  
Eisha Ganju ◽  
Neeraj Upmanyu ◽  
Sudhir Kumar Ray ◽  
Prabhat Jain

Novel drug delivery systems are now a days is creating a new interest in development of drug deliveries. Vesicular drug delivery system is also a part of these novel drug delivery systems. TDDS is the permeability of the skin, it is permeable to small molecules, lipophilic drug and highly impermeable to the macromolecules and hydrophilic drugs. Recent approaches have resulted in design of two vesicular carriers, ethosomes and ultra flexible lipid based elastic vesicles, transferosomes. Transferosomes have recently been introduced, which are capable of transdermal delivery of low as well as high molecular weight drugs. This offers several potential advantages over conventional routes like avoidance of first pass metabolism, predictable and extended duration of activity, minimizing undesirable side effects, utility of short half life drugs, improving physiological and pharmacological response and have been applied to increases the efficiency of the material transfer across the intact skin, by the use of penetration enhancers, iontophoresis, sonophoresis and use of colloidal carriers such as lipid vesicles (liposomes & proliposomes) and non-ionic surfactant vesicles (niosomes & proniosomes). It is suitable for controlled and targeted drug delivery and it can accommodate drug molecules with wide range of solubility. Due to its high deformability it gives better penetration of intact vesicles. They are biocompatible and biodegradable as they are made from natural phospholipids and have high entrapment efficiency. The preparation variables are depending upon the procedure involved for manufacturing of formulation and the preparation procedure was accordingly optimized and validated. Characterization of transferosomes can be done to know the vesicle size, morphology, drug content, entrapment efficiency, penetration ability, occlusion effect, surface charge, in vitro drug release, in vitro skin penetration etc., It increases stability of labile drugs and provides control release. Transferosomes thus differs from such more conventional vesicles primarily by its softer, more deformable, better adjustable artificial membrane. Keywords: Novel Drug Delivery System, Biocompatible, Characterization, Transferosomes.


Author(s):  
KANUPRIYA C. ◽  
NIMRATA SETH ◽  
N. S. GILL

Writing the review on gastro retentive drug delivery systems (GRDDS) was to start up the current literature with a special consequence on several gastro retentive approaches that have become main mode in the field of site-specific orally conduct sustained/controlled release drug delivery. Multi-furious ways have been made in research and development to rate-controlled oral drug delivery systems to solve physiological difficulties, like short gastric residence times (GRT) and unpredictable gastric emptying times (GET). GRDDS is a tool to prolong the GRT, thereby targeting site-specific drug release in the upper gastrointestinal tract (GIT) for local or systemic effect. Oral dosage forms as low bioavailability issues because of their swift gastric transition from the stomach, particularly in the case of drugs that are less soluble at an alkaline pH of the intestine. The drugs that produce their local action in the stomach get quickly emptied and don’t get enough residence time in the stomach. Many efforts have been made to extend the retention time of a drug delivery system to reduce the frequency of dose administration. GRDDS not only prolong dosing intervals but also increase patient compliance beyond the level of existing controlled release dosage forms. This article gives an overview of the advantages, disadvantages, and characterization of gastro retentive drug delivery systems. This also includes commercially available gastro retentive products and patents.


Author(s):  
Sunitha M Reddy ◽  
Sravani Baskarla

This article describes current strategies to enhance aqueous solubility and dissolution rate of poor soluble drugs. Most drugs in the market are lipophilic with low or poor water solubility. There are various methods to enhance solubility: co-solvency, particle size reduction, salt formation and Self Nanoemulsifying drug delivery systems, SEDDS is a novel approach to enhance solubility, dissolution rate and bioavailability of drugs. The study involves formulation and evaluation of solid self-Nano emulsifying drug delivery system (S-SNEDDS) to enhance aqueous solubility and dissolution rate. Oral route is the most convenient route for non-invasive administration. S-SNEDDS has more advantages when compared to the liquid self-emulsifying drug delivery system. Excipients were selected depends upon the drug compatibility oils, surfactants and co surfactants were selected to formulate Liquid SNEDDS these formulated liquid self-nano emulsifying drug delivery system converted into solid by the help of porous carriers, Melted binder or with the help of drying process. Conversion process of liquid to solid involves various techniques; they are spray drying; freeze drying and fluid bed coating technique; extrusion, melting granulation technique. Liquid SNEDDS has a high ability to improve dissolution and solubility of drugs but it also has disadvantages like incompatibility, decreased drug loading, shorter shelf life, ease of manufacturing and ability to deliver peptides that are prone to enzymatic hydrolysis.  


Author(s):  
SARIPILLI RAJESWARI ◽  
VANAPALLI SWAPNA

Microsponges (MSPs) are at the forefront of the rapidly developing field of novel drug delivery systems which are gaining popularity due to their use for controlled release and targeted drug delivery. The microsponge delivery system (MDS) is a patented polymeric system consisting of porous microspheres typically 10-25 microns in diameter, loaded with an active agent. They are tiny sponge-like spherical particles that consist of a myriad of interconnecting voids within a non-collapsible structure with a large porous surface through which active ingredient is released in a controlled manner. Microsponge also hold a certification as one of the potential approaches for gastric retention where many oral dosage forms face several physiological restrictions due to non-uniform absorption pattern, inadequate medication release and shorter residence time in the stomach. This type of drug delivery system which is non-irritating, non-allergic, non-toxic, can suspend or entrap a wide variety of substances, and can then be incorporated into a formulated product such as gel, cream, liquid or powder that is why it is called as a “versatile drug delivery system”. It overcomes the drawbacks of other formulations such as frequency of dosing, drug reaction, incompatibility with environmental condition. These porous microspheres were exclusively designed for chronotherapeutic topical drug delivery but attempt to utilize them for oral, pulmonary and parenteral drug delivery were also made. The present review elaborates about the multifunctional microsponge technology including its preparation, characterization, evaluation methods along with recent research and future potential.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Chao Yan ◽  
Yue Jin ◽  
Chuanxiang Zhao

AbstractNanoparticles as drug delivery systems can alter the drugs' hydrophilicity to affect drug uptake and efflux in tissues. They prevent drugs from non-specifically binding with bio-macromolecules and enhance drug accumulation at the lesion sites, improving therapy effects and reducing unnecessary side effects. Metal–organic frameworks (MOFs), the typical nanoparticles, a class of crystalline porous materials via self-assembled organic linkers and metal ions, exhibit excellent biodegradability, pore shape and sizes, and finely tunable chemical composition. MOFs have a rigid molecular structure, and tunable pore size can improve the encapsulation drug's stability under harsh conditions. Besides, the surface of MOFs can be modified with small-molecule ligands and biomolecule, and binding with the biomarkers which is overexpressed on the surface of cancer cells. MOFs formulations for therapeutic have been developed to effectively respond to the unique tumor microenvironment (TEM), such as high H2O2 levels, hypoxia, and high concentration glutathione (GSH). Thus, MOFs as a drug delivery system should avoid drugs leaking during blood circulation and releasing at the lesion sites via a controlling manner. In this article, we will summary environment responsive MOFs as drug delivery systems for tumor therapy under different stimuli.


2020 ◽  
Vol 11 (2) ◽  
pp. 2505-2518
Author(s):  
Sindhuja Devaraj ◽  
Ganesh GNK

Nanoparticulate drug delivery system are the rapidly developing system, and nanoparticles are present in the size range of 1-100nm. Nanoparticles composed of various thermal, electrical, and optical property. Nanoparticles offers the potential advantages over the traditional dosage forms it is ascribable to the properties of nanoparticles. Nanoparticulate drug delivery system ensures the site-specific delivery of a drug(Targeting drug delivery) and aids in improving the efficacy of the new as well as old drugs and has the potential in crossing the various physiological barriers and also improves the therapeutic index of the drugs and increases the patient compliance. The objectives of this review is to classify the nanoparticles based on the different groups, surface properties of nanoparticles, describe the strategies of drug targeting, the necessity of nanoparticles their general method of preparation, different methods used in characterization, self- assembly and mechanism of drug release in a systemic manner. The potential advantages and limitations of various nanoparticulate drug delivery systems are also discussed elaborately.


Author(s):  
Tushar N. Sonawane ◽  
Pradip D. Dhangar ◽  
Sagar D Patil ◽  
Azam Z. Shaikh

Novel Drug Delivery Systems are one of the widely use delivery system in the presence scenario. Novel drug delivery system is a novel approach to drug delivery that addresses the limitations of the traditional drug delivery systems. In the form of a Novel Drug Delivery System an existing drug molecule can get a new life. The novel drug delivery system is Increases bioavailability and it Can be used for long-term treatments of chronic illness, Sustained maintenance of plasma drug levels as well as it Decreased adverse drug effects in the total amount of drugs required thus reducing side effects it Improved patient compliance due to reduction in number and frequency of doses required. There is less damage sustained by normal tissue due to targeted drug delivery. In this paper our main focus to give the throughout knowledge of some newer (Novel drug delivery system) to understand the concept of the Novel dossage form.


2018 ◽  
Vol 10 (2) ◽  
pp. 1 ◽  
Author(s):  
Revathy B. Menon ◽  
Lakshmi V. S. ◽  
Aiswarya M. U. ◽  
Keerthana Raju ◽  
Sreeja C. Nair

A novel drug delivery system is the one that ensures optimum dose at the right time, at the right location. Porphysomes are among those drug delivery systems. Porphysomes are a means of vesicular drug delivery systems. They are liposome-like structures composed completely of porphyrin lipid. The porphysomes encapsulates the active medicament in vesicular structure. They are having an aqueous core which can be loaded with the medicament. They have the capacity to destroy the disease tissues. They absorb the heat in the near infrared region and release this heat to destroy the diseased tissues. Porphysomes are having immense applications in the field of positron-electron therapy (PET), photoacoustic imaging, photothermal therapy etc. This review article discusses regarding the Porphysome-the drug delivery system, its advantages and disadvantages, composition, method of preparation, applications and various aspects related to the porphysomal drug delivery.


Sign in / Sign up

Export Citation Format

Share Document