scholarly journals Transcription profiling of C/EBP targets identifies Per2 as a gene implicated in myeloid leukemia

Blood ◽  
2005 ◽  
Vol 106 (8) ◽  
pp. 2827-2836 ◽  
Author(s):  
Sigal Gery ◽  
Adrian F. Gombart ◽  
William S. Yi ◽  
Chloe Koeffler ◽  
Wolf-K. Hofmann ◽  
...  

AbstractCCAAT/enhancer-binding proteins (C/EBPs) are a family of transcription factors that regulate cell growth and differentiation in numerous cell types. To identify novel C/EBP-target genes, we performed transcriptional profiling using inducible NIH 3T3 cell lines expressing 1 of 4 members of the C/EBP family. Functional analysis revealed a previously unknown link between C/EBP proteins and circadian clock genes. Our microarray data showed that the expression levels of 2 core components of the circadian network, Per2 and Rev-Erbα, were significantly altered by C/EBPs. Recent studies suggested that Per2 behaves as a tumor suppressor gene in mice. Therefore, we focused our additional studies on Per2. We showed that Per2 expression is up-regulated by C/EBPα and C/EBPϵ. Per2 levels were reduced in lymphoma cell lines and in acute myeloid leukemia (AML) patient samples. In addition, we generated stable K562 cells that expressed an inducible Per2 gene. Induction of Per2 expression resulted in growth inhibition, cell cycle arrest, apoptosis, and loss of clonogenic ability. These results suggest that Per2 is a downstream C/EBPα-target gene involved in AML, and its disruption might be involved in initiation and/or progression of AML. (Blood. 2005; 106:2827-2836)

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1424-1424
Author(s):  
Bjoern Schneider ◽  
Stefan Nagel ◽  
Maren Kaufmann ◽  
Hilmar Quentmeier ◽  
Yoshinobu Matsuo ◽  
...  

Abstract Genomic amplifications of the 11q23 region occur in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) where MLL and a few neighboring genes, notably DDX6, are deemed salient targets. However, the extent to which amp(lified)-MLL and translocated MLL share effector targets remains to be established. Even less is known about the target(s) of deletions affecting the long arm of chromosome 5 (5q-) which reportedly partner amp-MLL. We analyzed three AML/MDS cell lines by cytogenetics (conventional and FISH) in parallel with real time q(uantitative)-PCR at both 11q23 and 5q2 to measure copy number and expression of salient target genes together with putative downstream targets. The cell lines comprised: MOLM-17 (transforming-MDS), SAML-2 (therapy-related AML), and UOC-M1 (AML-M1). All three cell lines exhibited approximately four-fold genomic amplification of 11q23 including MLL and DDX6, while the amplicon extended telomerically to include FLI1 (11q24) and HNT (11q25) in MOLM-17 and UOC-M1 only. Expression, quantified relative to AML/MDS cell lines without MLL rearrangement, revealed that of the genomically amplified genes only MLL was generally overexpressed, namely by 9.5x (MOLM-17), 5.1x (UOC-M1), and 4.6x (SAML-2). In addition to the highest MLL expression, in MOLM-17 FLI1 (3.8x) and DDX6 (2.8x) were significantly upregulated. Expression was also quantified among reputed MLL target genes, and showed that in the three cell lines MEIS1 was upregulated in MOLM-17 only (by 6x), and CDKN2C in all cell lines (by about 2x), while HOXA9 and CDKN1B showed near-normal levels of expression. All three cell lines carried 5q- with a common deleted region at 5q31 extending from 134.2–137.5 Mbp. Of a panel of genes recently identified as 5q- deletion targets (centromere-TIGA1, CAMLG, C5orf15, C5orf14, BRD8, HARS, KIAA0141, CSNK1A1, RBM22-telomere), only C5orf15 (function unknown) and BRD8 (a component of the nua4 histone acetyltransferase complex involved in transcriptional activation) were generally downregulated - to about 0.25x, and about 0.4x normalized expression levels, respectively. Both genes lie within the common deleted region. In summary, we have characterized amp-MLL and 5q- in MOLM-17, the first MDS cell line to be described with these rearrangements, together with two AML cell lines with similar cytogenetic profiles. Our data suggest that MLL is the only clear object of 11q23 amplification hitherto identified and CDKN2C its sole unequivocal target in AML/MDS cell lines. It is possible that MEIS1 is also targeted for activation in specific cell types or disease phases in MDS. These findings also highlight C5orf15 and/or BRD8 as possible leukemogenic accomplices targeted for downregulation in accompanying 5q-. These findings may point to differences in signalling pathways targeted by amp-MLL in AML and MDS.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Jia He ◽  
Bin Xiao ◽  
Xiaoyan Li ◽  
Yongyin He ◽  
Linhai Li ◽  
...  

MicroRNAs have been broadly implicated in cancer, but precise functions and mechanisms in carcinogenesis vary among cancer types and in many cases remain poorly understood. Hepatocellular carcinoma (HCC) is among the most frequent and lethal cancers. The aim of the present study was to investigate the role of miR-486-5p in HCC and identify its specific target. MiR-486-5p was significantly downregulated in HCC tissues and cell lines compared with noncancerous tissues and, respectively, although expression level was not correlated with the degree of infiltration or tumor stage. However, miR-486-5p overexpression in HCC cells inhibited proliferation and migration as evidenced by CCK-8 cell counting, wound healing, and transwell assays, indicating that miR-486-5p is an HCC suppressor. We employed four miRNA databases to predict the target genes of miR-486-5p and verified retrieved genes using qPCR and western blotting. The E3 ubiquitin ligase CBL was significantly downregulated by miR-486-5p overexpression in HCC cell lines at both mRNA and protein level, and overexpression of CBL counteracted the inhibitory effects of miR-486-5p on HCC cell proliferation and migration. Moreover, CBL expression was negatively correlated with miR-486-5p expression in HCC tissues. Collectively, our results suggest that miR-486-5p may act as a tumor suppressor gene in HCC by downregulating CBL expression.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2638-2638
Author(s):  
Hiroya Asou ◽  
Hirotaka Matsui ◽  
Yuko Ozaki ◽  
Akiko Nagamachi ◽  
Daisuke Aki ◽  
...  

Abstract To isolate myeloid tumor suppressor gene(s) in 7q, we searched microdeletions in a region spanning 21.7 Mb within 7q21.2–7q31.1 using a microarray-based CGH system. By investigation of 21 childhood myeloid leukemia patients with normal karyotype, we identified a common microdeletion cluster spanning approximately 120 Kb in the 7q21.3 subband. Eight (38%) patients shared this microdeletion, which was not detected in normal individuals. Real-time quantitative PCR revealed that this region is also deleted in 9 (29%) out of 31 adult RAEB and AML patients. Database search revealed that this region contains three hypothetical genes. Among them, we chose one previously uncharacterized gene for further investigation and named Miki (mitotic kinetics regulator) for the function of its gene product, described below. Immunoblot analysis revealed high levels of Miki expression in most lymphoid leukemia cell lines, while half of myeloid leukemia cell lines expressed Miki at reduced levels. In six leukemia lines carrying monosomy 7, expression levels were generally low. Miki co-localized with the Golgi apparatus in the interphase and with centrosomes and spindles in the mitotic phase. To test the function of Miki, we used si-RNAs to downregulate Miki expression in HeLa and K562 cells, both of which show basically normal metaphase and nuclear morphology. Cells expressing Miki at reduced levels showed insufficient maturation and disturbed positioning of centrosomes, resulting in unorganized spindles including loss of spindle tension, curled and fragile spindles, or even completely disturbed spindle formation. Time-lapse observation revealed prometaphase and/or metaphase delay with unaligned or even totally scattered chromosomes in prometaphase in virtually all cells in the mitotic phase. As a result, cells underwent pre-anaphase arrest and exited mitosis in the absence of chromosome segregation or terminated mitosis by cell death. In the interphase, there were many cells with chromatid bridges and/or bi- or tri-nuclear or even multinuclear cells with micronuclei that resembled pathological cells routinely observed in the bone marrow pictures of MDS patients. Interestingly, myeloid cell lines with low Miki expression, including those with monosomy 7, generally showed abnormal mitosis such as scattered chromosomes and abnormal nuclear morphologies (multi-nuclear cells with small nuclei) at higher frequency than cell lines expressing Miki at high levels. Moreover, induction of Miki restores normal mitosis in leukemia cells with monosomy 7. Miki was poly(ADP-ribosyl)ated (PARsylated) in late G2 to M phase by tankyrase-1, one of PAR polymerase (PARP), and tankyrase-1 activity was required for the binding of Miki to spindles and centrosomes. These data suggest that loss of Miki gene contributes to the development and progression of MDS by disturbing mitosis.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 365-365
Author(s):  
Hilmar Quentmeier ◽  
Sonja Röhrs ◽  
Wilhelm G Dirks ◽  
Claus Meyer ◽  
Rolf Marschalek ◽  
...  

Abstract Abstract 365 Background: Translocations of the Mixed Lineage Leukemia (MLL) gene occur in a subset (5%) of acute myeloid leukemia (AML) and in mixed phenotype acute leukemia in infancy, a disease with extremely poor prognosis. Animal model systems show that MLL gain of function mutations may contribute to leukemogenesis. Wild-type MLL carries histone methyltransferase activity and affects specific target genes, such us HOXA cluster genes. While the more than three dozen MLL fusion proteins known today exert different specific functions, they finally induce transcription of individual target genes. Consequently, acute lymphoblastic leukemias (ALL) with MLL mutations (MLLmu) exhibit typical gene expression profiles including high-level expression of HOXA cluster genes. Aim of this study was to find a correlation between the MLL mutational status and tumor suppressor gene methylation/expression in acute leukemia cell lines. Results: Using MS-MLPA (methylation-specific multiplex ligation-dependent probe amplification assay), methylation of 24 different TSG was analyzed in 28 MLLmu and MLLwt acute leukemia cell lines. 1.8/24 TSG were methylated in MLLmu AML cells, 6.2/24 TSG were methylated in MLLwt AML cells. Hypomethylation and expression of the tumor suppressor genes (TSG) BEX2, IGSF4 and TIMP3 turned out to be characteristic of MLLmu acute myeloid leukemia (AML) cell lines. MLL wild-type (MLLwt) AML cell lines displayed hypermethylated TSG promoters resulting in transcriptional silencing. Demethylating agents and inhibitors of histone deacetylases restored expression of BEX2, IGSF4 and TIMP3 confirming epigenetic silencing of these genes in MLLwt cells. The positive correlation between MLL translocation, TSG hypomethylation and expression suggested that MLL fusion proteins were responsible for dysregulation of TSG expression in MLLmu cells. This concept was supported by our observation that Bex2 mRNA levels in MLL-ENL transgenic mouse cell lines required expression of the MLL fusion gene. Conclusion: These results suggest that the conspicuous expression of the TSG BEX2, IGSF4 and TIMP3 in MLLmu AML cell lines is the consequence of altered epigenetic properties of MLL fusion proteins. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1388-1388
Author(s):  
Xiaomei Chen ◽  
Fang Liu ◽  
Wei Xiong ◽  
Xiangjun Chen ◽  
Cong Lu ◽  
...  

Abstract Abstract 1388 Microvesicles(MVs) are small exosomes of endocytic origin released by normal healthy or damaged cell types, including leukemic cells. MVs have been considered as cell dust, however, recent data bring evidences that MVs generated during cell activation or apoptosis can transfer biologic messages between different cell types. MicroRNAs (miRNAs) have been demonstrated to be aberrantly expressed in leukemia and the overall miRNA expression could differentiate normal versus leukemia. The MVs expressing miRNAs were found in the primary tumors. However it is currently unknown whether miRNA content changes in MVs derived from leukemic cells. Here we compared the miRNA expression in leukemia-derived MVs to corresponding leukemia cells and analysed their roles in leukemia. K562 cells were cultured and collected. MVs derived from K562 cells were also isolated. The presence and levels of specific miRNAs from both MVs derived from K562 cells and K562 cells were determined by Agilent miRNA microarray analysis probing for 888 miRNAs. Some selected miRNAs were verified by real time qRT-PCR. Bioinformatic software tools were used to predict the target genes of identified miRNAs and define their function. Our results showed that 77 and 122 miRNAs were only expressed in MVs and K562 cells, respectively. There were significant differences in miRNA expression profiles between MVs and K562 cells. We also found that 112 miRNAs were co-expressed in MVs and K562 cells. This observaton may suggest that compartmentalization of miRNAs from cells into to MVs, for at least some miRNAs, is an active (selective) process. Among those abnormally expressed miRNAs, some have been proposed oncomiRNAs or tumor suppressors. For example, miR-155, has been proposed as oncomiRNA, was abnormally expressed only in MVs in our study, suggesting that oncomiRNA was present in MVs. Further analysis revealed that 39 potential target genes regulated by miR-155. Among them, 4 genes involed in oncogenes and the signal genes. OncomiRNAs such as miR-27a and miR-21 expressed in both MVs and corresponding cells, indicating that MVs bear miRNA characteristic of the cell origin. MVs, released into the leukemia microenvironment, play an important role in leukemia. In contrast to oncomiRNAs, if miRNA is associated with tumor suppressive activity, it is regarded as a tumor suppressor (oncosuppressor). The aberrantly expressed miR-125a-3p, miR-125-5p,miR-27b, which have implicated as tumor suppressors, appear in both cellular and MVs of leukemia in our study. MiR-125a-3p, miR-125-5p and miR-27b regulated 308 potential target genes. To our knowledge, 10 of them are tumor suppression genes. It is possible that these aberrantly expressed tumor suppressor miRNAs decreased or lost their roles of tumor suppression, which led to decrease or loss their roles of regulating their target genes including oncogenes, consequently resulted in leukemia. Since K562 cells presented t(9;22), we further examined the predicted function of the 6 expressed miRNAs located in chrosome 9 (hsa-miR-188-5p,hsa-miR-602)and 22(hsa-let-7b,hsa-miR-1249,hsa-miR-130b,hsa-miR-185), which expressed both in the MVs and K562 cells. Using the TargetScan, we found 442 predicted targets regulated by 6 miRNAs. Those miRNAs may play roles in leukemia via these 422 genes. This study is the first to identify and define miRNA expression between K562 cells presented t(9;22), derived from K562 cells and their corresponding cells. We found significant differences in miRNA expression between MVs and corresponding leukemia. K562 cells released MVs riched in miRNAs including oncomiRNAs or tumor suppressor miRNAs into leukemia microenvironment, which play a role in leukemia via regulating their targer genes including oncogenes, consequently resulted in leukemia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4613-4613
Author(s):  
Ming-Yu Yang ◽  
Pai-Mei Lin ◽  
Jui-Feng Hsu ◽  
Wen-Chi Yang ◽  
Yi-Chang Liu ◽  
...  

Abstract Abstract 4613 Circadian rhythms regulate various functions of human body and disruption of circadian rhythm has been associated with cancer development and tumor progression. Circadian clock genes use transcriptional-translational feedback loops to control circadian rhythms. Many transcriptional regulators are histone acetyltransferases (HAT) or histone deacetylases (HDAC). As clock function and integration of inputs rely on transcriptional regulation, it is possible that chromatin is remodeled during circadian cycles and in response to signals that regulate the clock. SIRT1 (sirtuin 1) is a HDAC that has recently been identified as a crucial modulator of the circadian clock machinery. To date, at least 7 SIRT genes (SIRT1–7) have been identified. In our previous report we have demonstrated the daily expression patterns of PER1, PER2, PER3, CRY1, CRY2, and CKIe in peripheral blood (PB) of healthy individuals were abolished in chronic myeloid leukemia (CML) patients and partial recoveries of daily patterns were observed in CML patients with complete cytogenetic response (CCyR) and major molecular response (MMR) post-imatinib treatment [J Biol Rhythms 2011]. In this study we further investigated the expression profiles of the 7 SIRT genes (SIRT1–7) in PB total leukocytes from 49 CML and 22 healthy volunteers. Collection of PB was carried out at four time points: 2000 h, 0200 h, 0800 h, and 1400 h, respectively. In PB total leukocytes of healthy individuals, the daily pattern of SIRT1 (p < 0.01) and SIRT5 (p < 0.05) expression level peaked at 0200 h, and SIRT2 (p < 0.01) peaked at 0800 h. Daily pattern expression of these 3 genes was abolished in newly diagnosed pre-imatinib mesylate treated and blast crisis-phase CML patients. Partial daily patterns of gene expression recoveries were observed in CML patients with CCyR and MMR. In some serial monitored individual patients, the recoveries of oscillations of SIRT1, 2, and 5 genes expression accompanied with the disappearance of BCR-ABL transcripts were also noted. The expression of SIRT3, 6, and 7 did not show a time-dependent variation among the healthy and CML patients. SIRT4 expression was undetectable both in the healthy and CML patients. Updated in vitro study results of the regulation of SIRT1, 2, and 5 genes on circadian clock genes expression will be presented at the meeting. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2000 ◽  
Vol 95 (3) ◽  
pp. 1014-1022 ◽  
Author(s):  
Charles Perkins ◽  
Caryn N. Kim ◽  
Guofu Fang ◽  
Kapil N. Bhalla

We investigated the in vitro growth inhibitory and apoptotic effects of clinically achievable concentrations of As2O3 (0.5 to 2.0 μmol/L) against human myeloid leukemia cells known to be resistant to a number of apoptotic stimuli. These included chronic myelocytic leukemia (CML) blast crisis K562 and HL-60/Bcr-Abl cells, which contain p210 and p185 Bcr-Abl, respectively, and HL-60 cell types that overexpress Bcl-2 (HL-60/Bcl-2), Bcl-xL(HL-60/Bcl-xL), MDR (HL-60/VCR), or MRP (HL-60/AR) protein. The growth-inhibitory IC50 values for As2O3 treatment for 7 days against all these cell types ranged from 0.8 to 1.5 μmol/L. Exposure to 2 μmol/L As2O3 for 7 days induced apoptosis of all cell types, including HL-60/Bcr-Abl and K562 cells. This was associated with the cytosolic accumulation of cyt c and preapoptotic mitochondrial events, such as the loss of inner membrane potential (▵Ψm) and the increase in reactive oxygen species (ROS). Treatment with As2O3 (2 μmol/L) generated the activities of caspases, which produced the cleavage of the BH3 domain containing proapoptotic Bid protein and poly (ADP-ribose) polymerase. Significantly, As2O3-induced apoptosis of HL-60/Bcr-Abl and K562 cells was associated with a decline in Bcr-Abl protein levels, without any significant alterations in the levels of Bcl-xL, Bax, Apaf-1, Fas, and FasL. Although As2O3 treatment caused a marked increase in the expression of the myeloid differentiation marker CD11b, it did not affect Hb levels in HL-60/Bcr-Abl, K562, or HL-60/neo cells. However, in these cells, As2O3 potently induced hyper-acetylation of the histones H3 and H4. These findings characterize As2O3 as a growth inhibiting and apoptosis-inducing agent against a variety of myeloid leukemia cells resistant to multiple apoptotic stimuli.


2020 ◽  
Author(s):  
Amlan Talukder ◽  
Haiyan Hu ◽  
Xiaoman Li

ABSTRACTIt is still challenging to predict interacting enhancer-promoter pairs (IEPs), partially because of our limited understanding of their characteristics. To understand IEPs better, here we studied the IEPs in nine cell lines and nine primary cell types. We observed that one enhancer is likely to interact with either none or all of the target genes of another enhancer. This observation implies that enhancers form clusters, and every enhancer in the same cluster synchronously interact with almost every member of a set of genes and only this set of genes. We perceived that an enhancer can be up to two mega base pairs away from other enhancers in the same cluster. We also noticed that although a fraction of these clusters of enhancers do overlap with super-enhancers, the majority of the enhancer clusters are different from the known super-enhancers. Our study showed a new characteristic of IEPs, which may shed new light on distal gene regulation and the identification of IEPs.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A66-A67
Author(s):  
Audrey L Earnhardt ◽  
David G Riley ◽  
Noushin Ghaffari ◽  
Penny K Riggs ◽  
Charles R Long ◽  
...  

Abstract The primary objective of this investigation was to determine whether circadian clock genes were differentially expressed within or among bovine hypothalamic paraventricular nucleus (PVN), anterior pituitary gland (AP), adrenocortical (AC) and adrenomedullary (AM) tissues. The PVN, AP, AC, and AM were isolated from 5-yr-old Brahman cows (n = 8) harvested humanely at an abattoir between 0800-1100 h. Expression of target genes in each sample was evaluated via RNA-sequencing analyses. Gene counts were normalized using the trimmed mean of M values (TMM) method in the edgeR Package from Bioconductor, R. The normalized gene counts of genes important for circadian rhythm were statistically analyzed using the GLM Procedure of SAS. The genes analyzed were circadian locomotor output cycles protein kaput (CLOCK), cryptochrome circadian regulator 1 and 2 (CRY1 and CRY2), aryl hydrocarbon receptor nuclear translocator like (ARNTL), period circadian regulator 1 and 2 (PER1 and PER2), neuronal PAS domain protein 2 (NPAS2), and nuclear receptor subfamily 1 group D member 1 (NR1D1). Overall, relative expression profiles of clock genes differed (P &lt; 0.01) within each tissue with PER1 having greater expression in all tissues (P &lt; 0.01). Within the PVN expression of CLOCK, CRY1, ARNTL, and PER2 was less than that of CRY2, NPAS2, and NR1D1 (P &lt; 0.01). In the AP, with the exception of PER1, no other clock gene differed in degree of expression. In the AC, expression of CLOCK and NPAS2 was greater than CRY1, ARNTL, PER2, and NR1D1 (P &lt; 0.05), whereas CRY2 expression exceeded only CRY1 (P &lt; 0.05). Within the AM, CLOCK and CRY2 expression was greater than CRY1 and ARNTL (P &lt; 0.05). Overall, clock gene expression among tissues differed (P &lt; 0.01) for each individual clock gene. The AC and AM had similar clock gene expression, except expression of CRY2 and PER2 was greater in AM (P &lt; 0.05). The AC and AM had greater expression of CLOCK than the PVN and AP (P &lt; 0.01), with PVN having greater expression than AP (P &lt; 0.01). The AP had greater expression of NPAS2, followed by PVN, with the least expression in the AC and AM (P &lt; 0.01). Both PVN and AP had greater CRY1 and NR1D1 expression than AC or AM (P &lt; 0.01). The AP had greater PER1 expression than PVN, AC, and AM (P &lt; 0.01), whereas PVN, AC, and AM had greater ARNTL expression than AP (P &lt; 0.05). Both AP and AM had greater expression of PER2 than PVN or AC (P &lt; 0.01). The PVN had greater expression of CRY2 than the AP, AC, and AM (P &lt; 0.01). These results indicated that within each tissue the various clock genes were expressed in different quantities. Also, the clock genes were expressed differentially among the tissues of the bovine neuroendocrine adrenal system. Temporal relationships of these genes with the primary endocrine products of these tissues should be investigated to define the roles of peripheral clock genes in regulation of metabolism and health.


Sign in / Sign up

Export Citation Format

Share Document