scholarly journals Complex regulation of human NKG2D-DAP10 cell surface expression: opposing roles of the γc cytokines and TGF-β1

Blood ◽  
2011 ◽  
Vol 118 (11) ◽  
pp. 3019-3027 ◽  
Author(s):  
Yuk Pheel Park ◽  
Seung-Chul Choi ◽  
Patricia Kiesler ◽  
Aleksandra Gil-Krzewska ◽  
Francisco Borrego ◽  
...  

Abstract Natural killer (NK) cells help protect the host against viral infections and tumors. NKG2D is a vital activating receptor, also expressed on subsets of T cells, whose ligands are up-regulated by cells in stress. Ligation of NKG2D leads to phosphorylation of the associated DAP10 adaptor protein, thereby activating immune cells. Understanding how the expression of NKG2D-DAP10 is regulated has implications for immunotherapy. We show that IL-2 and TGF-β1 oppositely regulate NKG2D-DAP10 expression by NK cells. IL-2 stimulation increases NKG2D surface expression despite a decrease in NKG2D mRNA levels. Stimulation with IL-2 results in a small increase of DAP10 mRNA and a large up-regulation of DAP10 protein synthesis, indicating that IL-2–mediated effects are mostly posttranscriptional. Newly synthesized DAP10 undergoes glycosylation that is required for DAP10 association with NKG2D and stabilization of NKG2D expression. TGF-β1 has an opposite and dominant effect to IL-2. TGF-β1 treatment decreases DAP10, as its presence inhibits the association of RNA polymerase II with the DAP10 promoter, but not NKG2D mRNA levels. This leads to the down-regulation of DAP10 expression and, as a consequence, NKG2D protein as well. Finally, we show that other γc cytokines act similarly to IL-2 in up-regulating DAP10 expression and NKG2D-DAP10 surface expression.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yoshinobu Kariya ◽  
Midori Oyama ◽  
Takato Suzuki ◽  
Yukiko Kariya

AbstractEpithelial–mesenchymal transition (EMT) plays a pivotal role for tumor progression. Recent studies have revealed the existence of distinct intermediate states in EMT (partial EMT); however, the mechanisms underlying partial EMT are not fully understood. Here, we demonstrate that αvβ3 integrin induces partial EMT, which is characterized by acquiring mesenchymal phenotypes while retaining epithelial markers. We found αvβ3 integrin to be associated with poor survival in patients with lung adenocarcinoma. Moreover, αvβ3 integrin-induced partial EMT promoted migration, invasion, tumorigenesis, stemness, and metastasis of lung cancer cells in a TGF-β-independent fashion. Additionally, TGF-β1 promoted EMT progression synergistically with αvβ3 integrin, while a TGF-β signaling inhibitor showed no effect on αvβ3 integrin-induced partial EMT. Meanwhile, the microRNA-200 family abolished the αvβ3 integrin-induced partial EMT by suppressing αvβ3 integrin cell surface expression. These findings indicate that αvβ3 integrin is a key inducer of partial EMT, and highlight a new mechanism for cancer progression.


Blood ◽  
2011 ◽  
Vol 117 (10) ◽  
pp. 2874-2882 ◽  
Author(s):  
Karine Crozat ◽  
Céline Eidenschenk ◽  
Baptiste N. Jaeger ◽  
Philippe Krebs ◽  
Sophie Guia ◽  
...  

Abstract Natural killer (NK) cells are innate immune cells that express members of the leukocyte β2 integrin family in humans and mice. These CD11/CD18 heterodimers play critical roles in leukocyte trafficking, immune synapse formation, and costimulation. The cell-surface expression of one of these integrins, CD11b/CD18, is also recognized as a major marker of mouse NK-cell maturation, but its function on NK cells has been largely ignored. Using N-ethyl-N-nitrosourea (ENU) mutagenesis, we generated a mouse carrying an A → T transverse mutation in the Itgb2 gene, resulting in a mutation that prevented the cell-surface expression of CD18 and its associated CD11a, CD11b, and CD11c proteins. We show that β2 integrin–deficient NK cells have a hyporesponsive phenotype in vitro, and present an alteration of their in vivo developmental program characterized by a selective accumulation of c-kit+ cells. NK-cell missing-self recognition was partially altered in vivo, whereas the early immune response to mouse cytomegalovirus (MCMV) infection occurred normally in CD18-deficient mice. Therefore, β2 integrins are required for optimal NK-cell maturation, but this deficiency is partial and can be bypassed during MCMV infection, highlighting the robustness of antiviral protective responses.


2021 ◽  
Vol 102 (11) ◽  
Author(s):  
Mizuho Kajikawa ◽  
Nanae Imaizumi ◽  
Shiho Machii ◽  
Tomoka Nakamura ◽  
Nana Harigane ◽  
...  

Kaposi’s sarcoma-associated herpesvirus (KSHV) is an oncogenic etiological factor for Kaposi’s sarcoma and primary effusion lymphoma in immunocompromised patients. KSHV utilizes two immune evasion E3 ubiquitin ligases, namely K3 and K5, to downregulate the expression of antigen-presenting molecules and ligands of natural killer (NK) cells in the host cells through an ubiquitin-dependent endocytic mechanism. This allows the infected cells to evade surveillance and elimination by cytotoxic lymphocytes and NK cells. The number of host cell molecular substrates reported for these ubiquitin ligases is limited. The identification of novel substrates for these ligases will aid in elucidating the mechanism underlying immune evasion of KSHV. This study demonstrated that K5 downregulated the cell surface expression of l-selectin, a C-type lectin-like adhesion receptor expressed in the lymphocytes. Tryptophan residue located at the centre of the E2-binding site in the K5 RINGv domain was essential to downregulate l-selectin expression. Additionally, the lysine residues located at the cytoplasmic tail of l-selectin were required for the K5-mediated downregulation of l-selectin. K5 promoted the degradation of l-selectin through polyubiquitination. These results suggest that K5 downregulates l-selectin expression on the cell surface by promoting polyubiquitination and ubiquitin-dependent endocytosis, which indicated that l-selectin is a novel substrate for K5. Additionally, K3 downregulated l-selectin expression. The findings of this study will aid in the elucidation of a novel immune evasion mechanism in KSHV.


Blood ◽  
1989 ◽  
Vol 73 (1) ◽  
pp. 131-136 ◽  
Author(s):  
AG Rosmarin ◽  
SC Weil ◽  
GL Rosner ◽  
JD Griffin ◽  
MA Arnaout ◽  
...  

During the course of differentiation of early human myeloid cells toward monocytes and granulocytes, cell surface expression of the cell adhesion molecule, CD11b/CD18 (Mo1) increases dramatically and expression of myeloperoxidase (MPO), a bacteriocidal enzyme, decreases markedly. Using the inducible promyelocytic cell line HL-60 as a model, we studied the mRNA expression of these genes. Differentiation of these cells along both a monocytic and a granulocytic pathway demonstrated that the mRNA levels of the two subunits of CD11b/CD18 increased in a pattern temporally and quantitatively similar to the increase in cell surface expression of this heterodimer. In contrast, the expression of MPO mRNA decreased in a temporal and quantitative pattern similar to the known decrease in MPO protein during differentiation, suggesting that regulation of these myeloid-specific proteins may occur at the level of mRNA expression. These findings have important implications with regard to the nature of the block in differentiation in acute nonlymphocytic leukemia and the regulation of myeloid gene expression.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Julie Di Cristofaro ◽  
Mathieu Pelardy ◽  
Anderson Loundou ◽  
Agnès Basire ◽  
Carine Gomez ◽  
...  

Lung transplantation (LTx) is a valid therapeutic option for selected patients with end-stage lung disease. HLA-E seems to play a major role in the immune response to different viral infections and to affect transplantation outcome, in Hematopoietic Stem Cell Transplantation, for example. Two nonsynonymous alleles, HLA-E⁎01:01 and HLA-E⁎01:03, have functional differences, involving relative peptide affinity, cell surface expression, and potential lytic activity of NK cells. The aim of this retrospective study was to determine the impact of these two alleles for LTx recipients on anti-HLA alloimmunization risk, overall survival, and chronic rejection (CLAD). HLA-E was genotyped in 119 recipients who underwent LTx from 1998 to 2010 in a single transplantation center. In univariate analysis, both HLA-E homozygous states were associated with impaired overall survival compared to heterozygous HLA-E alleles (p=0.01). In multivariate analysis, HLA-E⁎01:03 allele showed increased CLAD occurrence when compared to homozygous HLA-E⁎01:01 status (HR: 3.563 (CI 95%, 1.016–12),p=0.047). HLA-E allele did not affect pathogen infection or the production ofde novoDSA. This retrospective study shows an uninvestigated, deleterious association of HLA-E alleles with LTx and requires verification using a larger cohort.


2016 ◽  
Vol 36 (7) ◽  
pp. 1152-1163 ◽  
Author(s):  
Maoxiang Zhang ◽  
Jason E. Davis ◽  
Chunman Li ◽  
Jie Gao ◽  
Wei Huang ◽  
...  

Molecular mechanisms governing the anterograde trafficking of nascent G protein-coupled receptors (GPCRs) are poorly understood. Here, we have studied the regulation of cell surface transport of α2-adrenergic receptors (α2-ARs) by GGA3 (Golgi-localized, γ-adaptin ear domain homology, ADP ribosylation factor-binding protein 3), a multidomain clathrin adaptor protein that sorts cargo proteins at thetrans-Golgi network (TGN) to the endosome/lysosome pathway. By using an inducible system, we demonstrated that GGA3 knockdown significantly inhibited the cell surface expression of newly synthesized α2B-AR without altering overall receptor synthesis and internalization. The receptors were arrested in the TGN. Furthermore, GGA3 knockdown attenuated α2B-AR-mediated signaling, including extracellular signal-regulated kinase 1/2 (ERK1/2) activation and cyclic AMP (cAMP) inhibition. More interestingly, GGA3 physically interacted with α2B-AR, and the interaction sites were identified as the triple Arg motif in the third intracellular loop of the receptor and the acidic motif EDWE in the VHS domain of GGA3. In contrast, α2A-AR did not interact with GGA3 and its cell surface export and signaling were not affected by GGA3 knockdown. These data reveal a novel function of GGA3 in export trafficking of a GPCR that is mediated via a specific interaction with the receptor.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253458
Author(s):  
George Mpekoulis ◽  
Efseveia Frakolaki ◽  
Styliani Taka ◽  
Anastasios Ioannidis ◽  
Alice G. Vassiliou ◽  
...  

L-Dopa decarboxylase (DDC) is the most significantly co-expressed gene with ACE2, which encodes for the SARS-CoV-2 receptor angiotensin-converting enzyme 2 and the interferon-inducible truncated isoform dACE2. Our group previously showed the importance of DDC in viral infections. We hereby aimed to investigate DDC expression in COVID-19 patients and cultured SARS-CoV-2-infected cells, also in association with ACE2 and dACE2. We concurrently evaluated the expression of the viral infection- and interferon-stimulated gene ISG56 and the immune-modulatory, hypoxia-regulated gene EPO. Viral load and mRNA levels of DDC, ACE2, dACE2, ISG56 and EPO were quantified by RT-qPCR in nasopharyngeal swab samples from COVID-19 patients, showing no or mild symptoms, and from non-infected individuals. Samples from influenza-infected patients were analyzed in comparison. SARS-CoV-2-mediated effects in host gene expression were validated in cultured virus-permissive epithelial cells. We found substantially higher gene expression of DDC in COVID-19 patients (7.6-fold; p = 1.2e-13) but not in influenza-infected ones, compared to non-infected subjects. dACE2 was more elevated (2.9-fold; p = 1.02e-16) than ACE2 (1.7-fold; p = 0.0005) in SARS-CoV-2-infected individuals. ISG56 (2.5-fold; p = 3.01e-6) and EPO (2.6-fold; p = 2.1e-13) were also increased. Detected differences were not attributed to enrichment of specific cell populations in nasopharyngeal tissue. While SARS-CoV-2 virus load was positively associated with ACE2 expression (r≥0.8, p<0.001), it negatively correlated with DDC, dACE2 (r≤−0.7, p<0.001) and EPO (r≤−0.5, p<0.05). Moreover, a statistically significant correlation between DDC and dACE2 expression was observed in nasopharyngeal swab and whole blood samples of both COVID-19 and non-infected individuals (r≥0.7). In VeroE6 cells, SARS-CoV-2 negatively affected DDC, ACE2, dACE2 and EPO mRNA levels, and induced cell death, while ISG56 was enhanced at early hours post-infection. Thus, the regulation of DDC, dACE2 and EPO expression in the SARS-CoV-2-infected nasopharyngeal tissue is possibly related with an orchestrated antiviral response of the infected host as the virus suppresses these genes to favor its propagation.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4793-4793
Author(s):  
Rohit Duggal ◽  
Sumit Sen Santara ◽  
Myra Gordon ◽  
Aoife Kilgallon ◽  
David Hermanson ◽  
...  

Abstract CD38 is a multifunctional cell surface protein that is frequently overexpressed on malignant plasma cells as well as on immune suppressive cells within the tumor microenvironment and constitutes a validated immunotherapeutic target in the treatment of multiple myeloma (MM). At ONK Therapeutics we are developing a gene edited, cord blood-derived NK (CBNK) cell product targeting CD38 for treatment of patients with relapsed and/or refractory MM. The product will be generated using a workflow shown in Figure 1A. This involves starting with cord blood that is processed for NK expansion using a clinically validated, Epstein Barr Virus-transformed lymphoblastoid cell line (EBV-LCL) feeder layer. The NK cells would undergo genetic engineering that involves gene editing followed by a non-viral chimeric antigen receptor (CAR) introduction process mediated by the TcBuster (TcB) DNA transposon system (Biotechne). This is followed by a second round of expansion on the EBV-LCL feeder layer resulting in a characterized NK cell product that can then be cryopreserved. In order to develop protocols for optimizing the best transfection efficiencies using the Maxcyte ATx instrument, GFP mRNA (TriLink) was used for transfecting CBNK cells using different electroporation programs. High transfection efficiency was obtained using all programs (Figure 1B.), with the best from program NK4. Since the product employs an optimized affinity second generation anti CD38 CAR (Stikvoort et al., Hemasphere 2021) which could also target CD38 expressed on neighbouring activated NK cells, it is imperative to knock out (KO) the cell surface expression of CD38 on the CAR-NK cells. To achieve this we carried out CRISPR Cas9 based KO studies of CD38 (Figure 1C. left top), using guide RNAs targeting CD38 (Synthego) in the form of a ribonucleoprotein (RNP) complex with Cas9. CBNK cells were transfected using the Maxcyte ATx instrument and CD38 cell surface expression monitored. As shown in Figure 1C. (left top), complete CD38 KO was achieved 11 days post transfection. ONK Therapeutics is actively involved in targeting and downregulating the negative regulator of cytokine signalling, cytokine inducible SH2-containing protein (CIS), which is encoded by the CISH gene, as part of their CBNK products. It has been demonstrated that in addition to facilitating greater cytokine signalling, CISH KO also confers greater metabolic capacity to NK cells resulting in their increased persistence (Daher et al., Blood 2021). Therefore, ONK Therapeutics have evaluated CISH KO in CBNK cells (Figure 1C, top right) using the same scheme that was used for the CD38 KO. Guide RNAs in the form of a RNP complex with Cas9 (Synthego) were transfected into CBNK cells and intracellular CIS protein levels monitored over time. Almost complete KO was attained by 9 days post transfection. In order to dial in CISH KO as part of the product, we further carried out a simultaneous KO of CD38 and CISH, in addition to individual KO of CD38 or CISH (Fig 1C, bottom). Simultaneous multiplexing of the CD38 and CISH KOs resulted in efficient double KO (DKO) . The extent of knock down leading to KO in the DKO setting was very similar to that of individual gene KOs. We then introduced the anti CD38 CAR as part of a transposon that could be transposed by TcB transposase in CBNK cells. After DKO of CD38 and CISH in CBNK cells, the transposon DNA and mRNA for transposase were electroporated. CAR expression was detected 4-5 days post transposition (Figure 1D) with more than 50% of cells expressing the anti CD38 CAR. These CAR expressing CBNK cells were then tested for functionality in a co-culture kill assay against the CD38 positive MM cell line, RPMI8226, which was engineered to express firefly luciferase. In a 4 hour killing assay, robust killing of the RPMI8226 cells was achieved by the CAR-CBNK cells with an EC 50 ten times lower (more potent) than that of mock electroporation control CBNK cells. To our knowledge this is the first successful expression of an anti CD38 CAR in cord-derived NK cells, and with a double CD38/CISH KO, using non-viral CAR insertion approaches. Current work is focusing on designing and developing a manufacturing-ready workflow for this potential product and further examining the effects of CAR NK cell activity in a DKO setting where both KOs contribute to improved metabolism and potentially NK cell persistence, as well as exploring the added benefit of a DR5 TRAIL variant to enhance cytotoxicity. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1990 ◽  
Vol 76 (6) ◽  
pp. 1181-1187 ◽  
Author(s):  
J Schubert ◽  
P Uciechowski ◽  
P Delany ◽  
HJ Tischler ◽  
W Kolanus ◽  
...  

Abstract Paroxysmal nocturnal hemoglobinuria (PNH) is clinically characterized by intravascular hemolysis, hemoglobinuria, iron deficiency anemia, and venous thrombosis. Pathophysiologically the disease has now been generally accepted as an acquired defect of phosphatidylinositol glycan (PIG)-anchored molecules on the cell surface of bone marrow-derived cells. This defect is functionally characterized by an abnormal susceptibility to complement-mediated lysis and has been described on erythrocytes, granulocytes, monocytes, and platelets. In contrast, contradictory data exist so far on the involvement of lymphocytes and natural killer (NK) cells. Using monoclonal antibodies (MoAbs) against newly defined PIG-linked surface structures such as CD48, CD55, and CD59, which are homogeneously expressed on lymphocytes of normal donors, we analyzed lymphocytes and their subpopulations in nine PNH patients by two color immunofluorescence. Our results showed that CD3+ T cells as well as CD16+ NK cells are at least partially involved in the deficient PIG-molecule surface expression. To more clearly define the defect in PNH, we generated NK clones from a PNH patient. Phenotypic analysis of these NK clones showed that they either were positive (n = 3) for PIG-linked surface structures such as CD48, CD55, and CD59 (eg, NKP1) or were completely negative (n = 7) for all of them (eg, NKP1). In functional tests the PIG-molecule negative clone NKP2 showed increased susceptibility to human complement compared with the PIG molecule positive clone NKP1. When analyzing the mRNA levels of the PIG-linked molecules CD55 and CD59 there was no difference at all between the two clones. We conclude from our data that NK cells as well as other lymphocyte subpopulations are involved in the PIG-linkage defect of PNH. These NK clones with differential expression of PIG- linked surface structures present for the first time ex vivo mutant cell lymphocyte lines that carry the defect leading to PIG deficiency in PNH.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Ilona Hromadnikova ◽  
Petra Pirkova ◽  
Lucie Sedlackova

NK cells represent a potential tool for adoptive immunotherapy against tumors. Membrane-bound Hsp70 acts as a tumor-specific marker enhancing NK cell activity. Using flow cytometry the effect of in vitro stimulation with IL-2 or IL-15 alone or in combination with Hsp70-derived 14-mer peptide (TKD) on cell surface expression of NK activatory receptors (CD16, NKG2D, NKG2C, NKp46, NKp44, NKp30, KIR2DL4, DNAM-1, and LAMP1) and NK inhibitory receptors (NKG2A, KIR2DL2/L3, LIR1/ILT-2, and NKR-P1A) in healthy individuals was studied. Results were expressed as the percentage of receptor expressing cells and the amount of receptor expressed by CD3−CD56+cellular population. CD94, NKG2D, NKp44, NKp30, KIR2DL4, DNAM-1, LAMP1, NKG2A, and NKR-P1A were upregulated after the stimulation with IL-2 or IL-15 alone or in combination with TKD. KIR2DL2/L3 was upregulated only by IL-15 and IL-15/TKD. Concurrently, an increase in a number of NK cells positive for CD94, NKp44, NKp30, KIR2DL4, and LAMP1 was observed. IL-15 and IL-15/TKD caused also cell number rise positive for KIR2DL2/L3 and NKR-P1A. Cell number positive for NKG2C and NKG2A was increased only by IL-2 and IL-2/TKD. The diverse effect of IL-2 or IL-15 w or w/o TKD on cell surface expression was observed in CD16, NKp46, and LIR1/ILT-2.


Sign in / Sign up

Export Citation Format

Share Document