scholarly journals Synthetic Lethality of Wnt Pathway Activation and Asparaginase in Drug-Resistant Acute Leukemias

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 891-891
Author(s):  
Laura Hinze ◽  
Maren Pfirrmann ◽  
Salmaan Karim ◽  
James Degar ◽  
Connor McGuckin ◽  
...  

Abstract Asparaginase, a bacterial enzyme that depletes the nonessential amino acid asparagine, is an integral component of acute leukemia therapy. However, asparaginase resistance is a common clinical problem whose biologic basis is poorly understood. We hypothesized, based on the concept of synthetic lethality, that gain-of-fitness alterations in the drug-resistant cells had conferred a survival advantage that could be exploited therapeutically. To identify molecular pathways that promote fitness of leukemic cells upon treatment with asparaginase, we performed a genome-wide CRISPR/Cas9 loss-of-function screen in the asparaginase-resistant T-ALL cell line CCRF-CEM. Cas9-expressing CCRF-CEM cells were transduced with a genome-wide guide RNA library (Shalem et al. Science343, 84-87, 2014), treated with either vehicle or asparaginase (10 U/L), and guide RNA representation was assessed. Our internal positive control, asparagine synthetase, was the gene most significantly depleted in asparaginase-treated cells (RRA significance score = 1.56 x 10-7), followed closely by two regulators of Wnt signaling, NKD2 and LGR6 (RRA score = 6 x 10-6and 2.19 x 10-5, respectively). To test how these genes regulate Wnt signaling in T-ALL, we transduced CCRF-CEM cells with shRNAs targeting NKD2 or LGR6, or with an shLuciferase control. Knockdown of NKD2 or LGR6 increased levels of active β-catenin, as well as the activity of a TopFLASH reporter of canonical Wnt/β-catenin transcriptional activity (P < 0.0001), indicating that NKD2 and LGR6 are negative regulators of Wnt signaling in these cells. We then validated the screen results using shRNA knockdown of NKD2 or LGR6, which profoundly sensitized these cells to asparaginase (P< 0.0001) and potentiated asparaginase-induced apoptosis (P < 0.0001). Inhibition of glycogen synthase kinase 3 (GSK3) is a key event in Wnt-induced signal transduction. Thus, we tested whether CHIR99021, an ATP-competitive inhibitor of both GSK3 isoforms (GSK3α and GSK3β), could phenocopy the effect of Wnt pathway activation. Pharmacologic inhibition of GSK3 induced significant sensitization to asparaginase across a panel of cell lines representing distinct subtypes of treatment-resistant acute leukemia, including T-ALL, AML and hypodiploid B-ALL (Fig. 1a, b). Importantly, GSK3 inhibition did not sensitize normal hematopoietic progenitors to asparaginase, suggesting a leukemia-specific effect. Wnt-induced sensitization to asparaginase was independent of β-catenin and mTOR activation, because genetic and pharmacologic manipulation of these Wnt targets had no effect on asparaginase response. Instead, it was mediated by Wnt-dependent stabilization of proteins (Wnt/STOP), which inhibits GSK3-dependent protein ubiquitination and proteasomal degradation (Acebron et al. Mol Cell54, 663-674, 2014, Taelman et al. Cell143, 1136-1148, 2010). Indeed,Wnt-induced sensitization to asparaginase was completely blocked by the transduction of leukemia cells with FBXW7 (P < 0.0001), whose overexpression can reverse Wnt/STOP (Acebron et al. Mol Cell54, 663-674; 2014), or by expression of a hyperactive proteasomal subunit ΔN-PSMA4 (P < 0.0001), which globally increases protein degradation (Choi et al. Nat Commun7, 10963, 2016). Although GSK3α and GSK3βare redundant for many of their biologic functions, genetic or pharmacologic inhibition of GSK3α fully phenocopied Wnt-induced sensitization to asparaginase (P < 0.0001), whereas selective inhibition of GSK3β had no effect. We then leveraged the recently developed GSK3α-selective small molecule inhibitor BRD0705 (Wagner et al. Sci Transl Med10, 2018) to test the in vivo therapeutic potential of our findings. Immunodeficient NRG mice were injected with leukemic cells from a primary asparaginase-resistant T-ALL patient derived xenograft, and treatment was begun after confirmation of leukemic engraftment (n=16 mice per group). In vivo, this PDX proved completely resistant to asparaginase or BRD0705 monotherapy, whereas the combination was highly efficacious (median survival of 17 days in vehicle, vs. median not reached at 60 days in combo-treated mice; P < 0.0001; Fig. 2a, b). The combination was also well-tolerated, with no appreciable weight changes or increases in serum bilirubin levels. Our findings provide a molecular rationale for activating Wnt/STOP signaling to improve the therapeutic index of asparaginase. Disclosures No relevant conflicts of interest to declare.

Genetics ◽  
2018 ◽  
Vol 211 (3) ◽  
pp. 913-923 ◽  
Author(s):  
Zhenghan Wang ◽  
Ofelia Tacchelly-Benites ◽  
Geoffrey P. Noble ◽  
Megan K. Johnson ◽  
Jean-Philippe Gagné ◽  
...  

Aberrant activation of the Wnt signal transduction pathway triggers the development of colorectal cancer. The ADP-ribose polymerase Tankyrase (TNKS) mediates proteolysis of Axin—a negative regulator of Wnt signaling—and provides a promising therapeutic target for Wnt-driven diseases. Proteolysis of TNKS substrates is mediated through their ubiquitination by the poly-ADP-ribose (pADPr)-dependent RING-domain E3 ubiquitin ligase RNF146/Iduna. Like TNKS, RNF146 promotes Axin proteolysis and Wnt pathway activation in some cultured cell lines, but in contrast with TNKS, RNF146 is dispensable for Axin degradation in colorectal carcinoma cells. Thus, the contexts in which RNF146 is essential for TNKS-mediated Axin destabilization and Wnt signaling remain uncertain. Herein, we tested the requirement for RNF146 in TNKS-mediated Axin proteolysis and Wnt pathway activation in a range of in vivo settings. Using null mutants in Drosophila, we provide genetic and biochemical evidence that Rnf146 and Tnks function in the same proteolysis pathway in vivo. Furthermore, like Tnks, Drosophila Rnf146 promotes Wingless signaling in multiple developmental contexts by buffering Axin levels to ensure they remain below the threshold at which Wingless signaling is inhibited. However, in contrast with Tnks, Rnf146 is dispensable for Wingless target gene activation and the Wingless-dependent control of intestinal stem cell proliferation in the adult midgut during homeostasis. Together, these findings demonstrate that the requirement for Rnf146 in Tnks-mediated Axin proteolysis and Wingless pathway activation is dependent on physiological context, and suggest that, in some cell types, functionally redundant pADPr-dependent E3 ligases or other compensatory mechanisms promote the Tnks-dependent proteolysis of Axin in both mammalian and Drosophila cells.


2018 ◽  
Author(s):  
Laura Hinze ◽  
Maren Pfirrmann ◽  
Salmaan Karim ◽  
James Degar ◽  
Connor McGuckin ◽  
...  

SUMMARYResistance to asparaginase, an antileukemic enzyme that depletes asparagine, is a common clinical problem. Using a genome-wide CRISPR/Cas9 screen, we found a synthetic lethal interaction between Wnt pathway activation and asparaginase in acute leukemias resistant to this enzyme. Wnt pathway activation induced asparaginase sensitivity in distinct treatment-resistant subtypes of acute leukemia, including T-lymphoblastic, hypodiploid B-lymphoblastic, and acute myeloid leukemias, but not in normal hematopoietic progenitors. Sensitization to asparaginase was mediated by Wnt-dependent stabilization of proteins (Wnt/STOP), which inhibits GSK3-dependent protein ubiquitination and degradation. Inhibiting the alpha isoform of GSK3 phenocopied this effect, and pharmacologic GSK3α inhibition profoundly sensitized drug-resistant leukemias to asparaginase. Our findings provide a molecular rationale for activation of Wnt/STOP signaling to improve the therapeutic index of asparaginase.SIGNIFICANCEThe intensification of asparaginase-based therapy has improved outcomes for several subtypes of acute leukemia, but the development of treatment resistance has a poor prognosis. We hypothesized, from the concept of synthetic lethality, that gain-of-fitness alterations in drug-resistant cells had conferred a survival advantage that could be exploited therapeutically. We found a synthetic lethal interaction between activation of Wnt-dependent stabilization of proteins (Wnt/STOP) and asparaginase in acute leukemias resistant to this enzyme. Inhibition of the alpha isoform of GSK3 was sufficient to phenocopy this effect, and the combination of GSK3α-selective inhibitors and asparaginase had marked therapeutic activity against leukemias resistant to monotherapy with either agent. These data indicate that drug-drug synthetic lethal interactions can improve the therapeutic index of cancer therapy.


2018 ◽  
Author(s):  
Belen Gutierrez ◽  
Jérôme Wong Ng ◽  
Lun Cui ◽  
Christophe Becavin ◽  
David Bikard

AbstractThe main outcome of efficient CRISPR-Cas9 cleavage in the chromosome of bacteria is cell death. This can be conveniently used to eliminate specific genotypes from a mixed population of bacteria, which can be achieved both in vitro, e.g. to select mutants, or in vivo as an antimicrobial strategy. The efficiency with which Cas9 kills bacteria has been observed to be quite variable depending on the specific target sequence, but little is known about the sequence determinants and mechanisms involved. Here we performed a genome-wide screen of Cas9 cleavage in the chromosome of E. coli to determine the efficiency with which each guide RNA kills the cell. Surprisingly we observed a large-scale pattern where guides targeting some regions of the chromosome are more rapidly depleted than others. Unexpectedly, this pattern arises from the influence of degrading specific chromosomal regions on the copy number of the plasmid carrying the guide RNA library. After taking this effect into account, it is possible to train a neural network to predict Cas9 efficiency based on the target sequence. We show that our model learns different features than previous models trained on Eukaryotic CRISPR-Cas9 knockout libraries. Our results highlight the need for specific models to design efficient CRISPR-Cas9 tools in bacteria.


Cancers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 153
Author(s):  
Sabrina Daniela da Silva ◽  
Fabio Albuquerque Marchi ◽  
Jie Su ◽  
Long Yang ◽  
Ludmila Valverde ◽  
...  

Invasive oral squamous cell carcinoma (OSCC) is often ulcerated and heavily infiltrated by pro-inflammatory cells. We conducted a genome-wide profiling of tissues from OSCC patients (early versus advanced stages) with 10 years follow-up. Co-amplification and co-overexpression of TWIST1, a transcriptional activator of epithelial-mesenchymal-transition (EMT), and colony-stimulating factor-1 (CSF1), a major chemotactic agent for tumor-associated macrophages (TAMs), were observed in metastatic OSCC cases. The overexpression of these markers strongly predicted poor patient survival (log-rank test, p = 0.0035 and p = 0.0219). Protein analysis confirmed the enhanced expression of TWIST1 and CSF1 in metastatic tissues. In preclinical models using OSCC cell lines, macrophages, and an in vivo matrigel plug assay, we demonstrated that TWIST1 gene overexpression induces the activation of CSF1 while TWIST1 gene silencing down-regulates CSF1 preventing OSCC invasion. Furthermore, excessive macrophage activation and polarization was observed in co-culture system involving OSCC cells overexpressing TWIST1. In summary, this study provides insight into the cooperation between TWIST1 transcription factor and CSF1 to promote OSCC invasiveness and opens up the potential therapeutic utility of currently developed antibodies and small molecules targeting cancer-associated macrophages.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Jennifer Davis ◽  
Michelle Sargent ◽  
Jianjian Shi ◽  
Lei Wei ◽  
Maurice S Swanson ◽  
...  

Rationale: During the cardiac injury response fibroblasts differentiate into myofibroblasts, a cell type that enhances extracellular matrix production and facilitates ventricular remodeling. To better understand the molecular mechanisms whereby myofibroblasts are generated in the heart we performed a genome-wide screen with 18,000 cDNAs, which identified the RNA-binding protein muscleblind-like splicing regulator 1 (MBNL1), suggesting a novel association between mRNA alternative splicing and the regulation of myofibroblast differentiation. Objective: To determine the mechanism whereby MBNL1 regulates myofibroblast differentiation and the cardiac fibrotic response. Methods and Results: Confirming the results from our genome wide screen, adenoviral-mediated overexpression of MBNL1 promoted transformation of rat cardiac fibroblasts and mouse embryonic fibroblasts (MEFs) into myofibroblasts, similar to the level of conversion obtained by the profibrotic agonist transforming growth factor β (TGFβ). Antithetically, Mbnl1 -/- MEFs were refractory to TGFβ-induced myofibroblast differentiation. MBNL1 expression is induced in transforming fibroblasts in response to TGFβ and angiotensin II. These results were extended in vivo by analysis of dermal wound healing, a process dependent on myofibroblast differentiation and their proper activity. By day 6 control mice had achieved 82% skin wound closure compared with only 40% in Mbnl1 -/- mice. Moreover, Mbnl1 -/- mice had reduced survival following myocardial infarction injury due to defective fibrotic scar formation and healing. High throughput RNA sequencing (RNAseq) and RNA immunoprecipitation revealed that MBNL1 directly regulates the alternative splicing of transcripts for myofibroblast signaling factors and cytoskeletal-assembly elements. Functional analysis of these factors as mediators of MBNL1 activity is also described here. Conclusions: Collectively, our data suggest that MBNL1 coordinates myofibroblast transformation by directly mediating the alternative splicing of an array of mRNAs encoding differentiation-specific signaling transcripts, which then alter the fibroblast proteome for myofibroblast structure and function.


2021 ◽  
Author(s):  
Stefanie Andersson ◽  
Antonia Romero ◽  
Joana Isabel Rodrigues ◽  
Sansan Hua ◽  
Xinxin Hao ◽  
...  

The toxic metalloid arsenic causes widespread misfolding and aggregation of cellular proteins. How these protein aggregates are formed in vivo, the mechanisms by which they affect cells, and how cells prevent their accumulation is not fully understood. To find components involved in these processes, we performed a genome-wide imaging screen and identified yeast deletion mutants with either enhanced or reduced protein aggregation levels during arsenite exposure. We show that many of the identified factors are crucial to safeguard protein homeostasis (proteostasis) and to protect cells against arsenite toxicity. The hits were enriched for various functions including protein biosynthesis and transcription, and dedicated follow-up experiments highlight the importance of accurate transcriptional and translational control for mitigating protein aggregation and toxicity during arsenite stress. Some of the hits are associated with pathological conditions, suggesting that arsenite-induced protein aggregation may affect disease processes. The broad network of cellular systems that impinge on proteostasis during arsenic stress identified in this current study provides a valuable resource and a framework for further elucidation of the mechanistic details of metalloid toxicity and pathogenesis.


2010 ◽  
Vol 30 (11) ◽  
pp. 2837-2848 ◽  
Author(s):  
Vanessa Gobert ◽  
Dani Osman ◽  
Stéphanie Bras ◽  
Benoit Augé ◽  
Muriel Boube ◽  
...  

ABSTRACT Transcription factors of the RUNX and GATA families play key roles in the control of cell fate choice and differentiation, notably in the hematopoietic system. During Drosophila hematopoiesis, the RUNX factor Lozenge and the GATA factor Serpent cooperate to induce crystal cell differentiation. We used Serpent/Lozenge-activated transcription as a paradigm to identify modulators of GATA/RUNX activity by a genome-wide RNA interference screen in cultured Drosophila blood cells. Among the 129 factors identified, several belong to the Mediator complex. Mediator is organized in three modules plus a regulatory “CDK8 module,” composed of Med12, Med13, CycC, and Cdk8, which has long been thought to behave as a single functional entity. Interestingly, our data demonstrate that Med12 and Med13 but not CycC or Cdk8 are essential for Serpent/Lozenge-induced transactivation in cell culture. Furthermore, our in vivo analysis of crystal cell development show that, while the four CDK8 module subunits control the emergence and the proliferation of this lineage, only Med12 and Med13 regulate its differentiation. We thus propose that Med12/Med13 acts as a coactivator for Serpent/Lozenge during crystal cell differentiation independently of CycC/Cdk8. More generally, we suggest that the set of conserved factors identified herein may regulate GATA/RUNX activity in mammals.


Cancer Cell ◽  
2019 ◽  
Vol 35 (4) ◽  
pp. 664-676.e7 ◽  
Author(s):  
Laura Hinze ◽  
Maren Pfirrmann ◽  
Salmaan Karim ◽  
James Degar ◽  
Connor McGuckin ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marta Isidro-Hernández ◽  
Andrea Mayado ◽  
Ana Casado-García ◽  
Jorge Martínez-Cano ◽  
Chiara Palmi ◽  
...  

Abstract PAX5 is one of the most frequently mutated genes in B-cell acute lymphoblastic leukemia (B-ALL), and children with inherited preleukemic PAX5 mutations are at a higher risk of developing the disease. Abnormal profiles of inflammatory markers have been detected in neonatal blood spot samples of children who later developed B-ALL. However, how inflammatory signals contribute to B-ALL development is unclear. Here, we demonstrate that Pax5 heterozygosis, in the presence of infections, results in the enhanced production of the inflammatory cytokine interleukin-6 (IL-6), which appears to act in an autocrine fashion to promote leukemia growth. Furthermore, in vivo genetic downregulation of IL-6 in these Pax5 heterozygous mice retards B-cell leukemogenesis, and in vivo pharmacologic inhibition of IL-6 with a neutralizing antibody in Pax5 mutant mice with B-ALL clears leukemic cells. Additionally, this novel IL–6 signaling paradigm identified in mice was also substantiated in humans. Altogether, our studies establish aberrant IL6 expression caused by Pax5 loss as a hallmark of Pax5-dependent B-ALL and the IL6 as a therapeutic vulnerability for B-ALL characterized by PAX5 loss.


Sign in / Sign up

Export Citation Format

Share Document