scholarly journals Genome-wide CRISPR-Cas9 screen in E. coli identifies design rules for efficient targeting

2018 ◽  
Author(s):  
Belen Gutierrez ◽  
Jérôme Wong Ng ◽  
Lun Cui ◽  
Christophe Becavin ◽  
David Bikard

AbstractThe main outcome of efficient CRISPR-Cas9 cleavage in the chromosome of bacteria is cell death. This can be conveniently used to eliminate specific genotypes from a mixed population of bacteria, which can be achieved both in vitro, e.g. to select mutants, or in vivo as an antimicrobial strategy. The efficiency with which Cas9 kills bacteria has been observed to be quite variable depending on the specific target sequence, but little is known about the sequence determinants and mechanisms involved. Here we performed a genome-wide screen of Cas9 cleavage in the chromosome of E. coli to determine the efficiency with which each guide RNA kills the cell. Surprisingly we observed a large-scale pattern where guides targeting some regions of the chromosome are more rapidly depleted than others. Unexpectedly, this pattern arises from the influence of degrading specific chromosomal regions on the copy number of the plasmid carrying the guide RNA library. After taking this effect into account, it is possible to train a neural network to predict Cas9 efficiency based on the target sequence. We show that our model learns different features than previous models trained on Eukaryotic CRISPR-Cas9 knockout libraries. Our results highlight the need for specific models to design efficient CRISPR-Cas9 tools in bacteria.

2021 ◽  
Author(s):  
Poppy Channa Sakti Sephton-Clark ◽  
Jennifer Tenor ◽  
Dena Toffaletti ◽  
Nancy Meyers ◽  
Charles Giamberardino ◽  
...  

Cryptococcus neoformans is the causative agent of cryptococcosis, a disease with poor patient outcomes, accounting for approximately 180,000 deaths each year. Patient outcomes may be impacted by the underlying genetics of the infecting isolate, however, our current understanding of how genetic diversity contributes to clinical outcomes is limited. Here, we leverage clinical, in vitro growth and genomic data for 284 C. neoformans isolates to identify clinically relevant pathogen variants within a population of clinical isolates from patients with HIV-associated cryptococcosis in Malawi. Through a genome-wide association study (GWAS) approach, we identify variants associated with fungal burden and growth rate. We also find both small and large-scale variation, including aneuploidy, associated with alternate growth phenotypes, which may impact the course of infection. Genes impacted by these variants are involved in transcriptional regulation, signal transduction, glycolysis, sugar transport, and glycosylation. When combined with clinical data, we show that growth within the CNS is reliant upon glycolysis in an animal model, and likely impacts patient mortality, as CNS burden modulates patient outcome. Additionally, we find genes with roles in sugar transport are under selection in the majority of these clinical isolates. Further, we demonstrate that two hypothetical proteins identified by GWAS impact virulence in animal models. Our approach illustrates links between genetic variation and clinically relevant phenotypes, shedding light on survival mechanisms within the CNS and pathways involved in this persistence.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 891-891
Author(s):  
Laura Hinze ◽  
Maren Pfirrmann ◽  
Salmaan Karim ◽  
James Degar ◽  
Connor McGuckin ◽  
...  

Abstract Asparaginase, a bacterial enzyme that depletes the nonessential amino acid asparagine, is an integral component of acute leukemia therapy. However, asparaginase resistance is a common clinical problem whose biologic basis is poorly understood. We hypothesized, based on the concept of synthetic lethality, that gain-of-fitness alterations in the drug-resistant cells had conferred a survival advantage that could be exploited therapeutically. To identify molecular pathways that promote fitness of leukemic cells upon treatment with asparaginase, we performed a genome-wide CRISPR/Cas9 loss-of-function screen in the asparaginase-resistant T-ALL cell line CCRF-CEM. Cas9-expressing CCRF-CEM cells were transduced with a genome-wide guide RNA library (Shalem et al. Science343, 84-87, 2014), treated with either vehicle or asparaginase (10 U/L), and guide RNA representation was assessed. Our internal positive control, asparagine synthetase, was the gene most significantly depleted in asparaginase-treated cells (RRA significance score = 1.56 x 10-7), followed closely by two regulators of Wnt signaling, NKD2 and LGR6 (RRA score = 6 x 10-6and 2.19 x 10-5, respectively). To test how these genes regulate Wnt signaling in T-ALL, we transduced CCRF-CEM cells with shRNAs targeting NKD2 or LGR6, or with an shLuciferase control. Knockdown of NKD2 or LGR6 increased levels of active β-catenin, as well as the activity of a TopFLASH reporter of canonical Wnt/β-catenin transcriptional activity (P < 0.0001), indicating that NKD2 and LGR6 are negative regulators of Wnt signaling in these cells. We then validated the screen results using shRNA knockdown of NKD2 or LGR6, which profoundly sensitized these cells to asparaginase (P< 0.0001) and potentiated asparaginase-induced apoptosis (P < 0.0001). Inhibition of glycogen synthase kinase 3 (GSK3) is a key event in Wnt-induced signal transduction. Thus, we tested whether CHIR99021, an ATP-competitive inhibitor of both GSK3 isoforms (GSK3α and GSK3β), could phenocopy the effect of Wnt pathway activation. Pharmacologic inhibition of GSK3 induced significant sensitization to asparaginase across a panel of cell lines representing distinct subtypes of treatment-resistant acute leukemia, including T-ALL, AML and hypodiploid B-ALL (Fig. 1a, b). Importantly, GSK3 inhibition did not sensitize normal hematopoietic progenitors to asparaginase, suggesting a leukemia-specific effect. Wnt-induced sensitization to asparaginase was independent of β-catenin and mTOR activation, because genetic and pharmacologic manipulation of these Wnt targets had no effect on asparaginase response. Instead, it was mediated by Wnt-dependent stabilization of proteins (Wnt/STOP), which inhibits GSK3-dependent protein ubiquitination and proteasomal degradation (Acebron et al. Mol Cell54, 663-674, 2014, Taelman et al. Cell143, 1136-1148, 2010). Indeed,Wnt-induced sensitization to asparaginase was completely blocked by the transduction of leukemia cells with FBXW7 (P < 0.0001), whose overexpression can reverse Wnt/STOP (Acebron et al. Mol Cell54, 663-674; 2014), or by expression of a hyperactive proteasomal subunit ΔN-PSMA4 (P < 0.0001), which globally increases protein degradation (Choi et al. Nat Commun7, 10963, 2016). Although GSK3α and GSK3βare redundant for many of their biologic functions, genetic or pharmacologic inhibition of GSK3α fully phenocopied Wnt-induced sensitization to asparaginase (P < 0.0001), whereas selective inhibition of GSK3β had no effect. We then leveraged the recently developed GSK3α-selective small molecule inhibitor BRD0705 (Wagner et al. Sci Transl Med10, 2018) to test the in vivo therapeutic potential of our findings. Immunodeficient NRG mice were injected with leukemic cells from a primary asparaginase-resistant T-ALL patient derived xenograft, and treatment was begun after confirmation of leukemic engraftment (n=16 mice per group). In vivo, this PDX proved completely resistant to asparaginase or BRD0705 monotherapy, whereas the combination was highly efficacious (median survival of 17 days in vehicle, vs. median not reached at 60 days in combo-treated mice; P < 0.0001; Fig. 2a, b). The combination was also well-tolerated, with no appreciable weight changes or increases in serum bilirubin levels. Our findings provide a molecular rationale for activating Wnt/STOP signaling to improve the therapeutic index of asparaginase. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Author(s):  
Wenqiang Li ◽  
Shuntang Li ◽  
Jie Qiao ◽  
Fei Wang ◽  
Yang Liu ◽  
...  

AbstractCRISPR-Cas9 is a versatile and powerful genome engineering tool. Recently, Cas9 ribonucleoprotein (RNP) complexes have been used as promising biological tools with plenty of in vivo and in vitro applications, but there are by far no efficient methods to produce Cas9 RNP at large scale and low cost. Here, we describe a simple and effective approach for direct preparation of Cas9 RNP from E. coli by co-expressing Cas9 and target specific single guided RNAs. The purified RNP showed in vivo genome editing ability, as well as in vitro endonuclease activity that combines with an unexpected superior stability to enable routine uses in molecular cloning instead of restriction enzymes. We further develop a RNP-based PCR-free method termed Cas-Brick in a one-step or cyclic way for seamless assembly of multiple DNA fragments with high fidelity up to 99%. Altogether, our findings provide a general strategy to prepare Cas9 RNP and supply a convenient and cost-effective DNA assembly method as an invaluable addition to synthetic biological toolboxes.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Martin Lempp ◽  
Niklas Farke ◽  
Michelle Kuntz ◽  
Sven Andreas Freibert ◽  
Roland Lill ◽  
...  

Abstract Metabolism controls gene expression through allosteric interactions between metabolites and transcription factors. These interactions are usually measured with in vitro assays, but there are no methods to identify them at a genome-scale in vivo. Here we show that dynamic transcriptome and metabolome data identify metabolites that control transcription factors in E. coli. By switching an E. coli culture between starvation and growth, we induce strong metabolite concentration changes and gene expression changes. Using Network Component Analysis we calculate the activities of 209 transcriptional regulators and correlate them with metabolites. This approach captures, for instance, the in vivo kinetics of CRP regulation by cyclic-AMP. By testing correlations between all pairs of transcription factors and metabolites, we predict putative effectors of 71 transcription factors, and validate five interactions in vitro. These results show that combining transcriptomics and metabolomics generates hypotheses about metabolism-transcription interactions that drive transitions between physiological states.


Parasitology ◽  
2013 ◽  
Vol 140 (12) ◽  
pp. 1523-1533 ◽  
Author(s):  
J. HODGKINSON ◽  
K. CWIKLINSKI ◽  
N. J. BEESLEY ◽  
S. PATERSON ◽  
D. J. L. WILLIAMS

SUMMARYDespite years of investigation into triclabendazole (TCBZ) resistance in Fasciola hepatica, the genetic mechanisms responsible remain unknown. Extensive analysis of multiple triclabendazole-susceptible and -resistant isolates using a combination of experimental in vivo and in vitro approaches has been carried out, yet few, if any, genes have been demonstrated experimentally to be associated with resistance phenotypes in the field. In this review we summarize the current understanding of TCBZ resistance from the approaches employed to date. We report the current genomic and genetic resources for F. hepatica that are available to facilitate novel functional genomics and genetic experiments for this parasite in the future. Finally, we describe our own non-biased approach to mapping the major genetic loci involved in conferring TCBZ resistance in F. hepatica.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Huifeng Hao ◽  
Sheng Hu ◽  
Dawei Bu ◽  
Xiaogang Sun ◽  
Miao Wang

CXCR7 is a non-classical chemokine receptor for CXCL12, whose gene represents a genome-wide association locus for coronary artery disease. Global deletion of CXCR7 increased experimentally induced neointimal formation and atherosclerosis in hyperlipidemic mice, with evidence that CXCR7 modified cholesterol uptake to adipose tissue. We found that CXCR7 was expressed in endothelial cells of mouse neointima and human aortic lesions. To examine a role of endothelial CXCR7 in vascular remodeling, endothelial CXCR7 inducible knockout mice were studied for their vascular response to wire injury in femoral arteries. Tamoxifen treatment of mice harboring floxed CXCR7 and Cdh5 -promoter driven CreERT2 , essentially abolished endothelial CXCR7 expression in vitro and in vivo. Postnatal deletion of endothelial CXCR7 exacerbated neointimal formation on normalipidemic background, four weeks after injury. Mechanistically, this was attributable to attenuated endothelial repair following endothelial injury. Collectively, endothelial CXCR7 is a key regulator of vascular remodeling, independent of lipid traits.


2020 ◽  
Vol 48 (11) ◽  
pp. e64-e64 ◽  
Author(s):  
Alicia Calvo-Villamañán ◽  
Jérome Wong Ng ◽  
Rémi Planel ◽  
Hervé Ménager ◽  
Arthur Chen ◽  
...  

Abstract The ability to block gene expression in bacteria with the catalytically inactive mutant of Cas9, known as dCas9, is quickly becoming a standard methodology to probe gene function, perform high-throughput screens, and engineer cells for desired purposes. Yet, we still lack a good understanding of the design rules that determine on-target activity for dCas9. Taking advantage of high-throughput screening data, we fit a model to predict the ability of dCas9 to block the RNA polymerase based on the target sequence, and validate its performance on independently generated datasets. We further design a novel genome wide guide RNA library for E. coli MG1655, EcoWG1, using our model to choose guides with high activity while avoiding guides which might be toxic or have off-target effects. A screen performed using the EcoWG1 library during growth in rich medium improved upon previously published screens, demonstrating that very good performances can be attained using only a small number of well designed guides. Being able to design effective, smaller libraries will help make CRISPRi screens even easier to perform and more cost-effective. Our model and materials are available to the community through crispr.pasteur.fr and Addgene.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jianguo Huang ◽  
Mark Chen ◽  
Eric S. Xu ◽  
Lixia Luo ◽  
Yan Ma ◽  
...  

AbstractCooperating gene mutations are typically required to transform normal cells enabling growth in soft agar or in immunodeficient mice. For example, mutations in Kras and transformation-related protein 53 (Trp53) are known to transform a variety of mesenchymal and epithelial cells in vitro and in vivo. Identifying other genes that can cooperate with oncogenic Kras and substitute for Trp53 mutation has the potential to lead to new insights into mechanisms of carcinogenesis. Here, we applied a genome-wide CRISPR/Cas9 knockout screen in KrasG12D immortalized mouse embryonic fibroblasts (MEFs) to search for genes that when mutated cooperate with oncogenic Kras to induce transformation. We also tested if mutation of the identified candidate genes could cooperate with KrasG12D to generate primary sarcomas in mice. In addition to identifying the well-known tumor suppressor cyclin dependent kinase inhibitor 2A (Cdkn2a), whose alternative reading frame product p19 activates Trp53, we also identified other putative tumor suppressors, such as F-box/WD repeat-containing protein 7 (Fbxw7) and solute carrier family 9 member 3 (Slc9a3). Remarkably, the TCGA database indicates that both FBXW7 and SLC9A3 are commonly co-mutated with KRAS in human cancers. However, we found that only mutation of Trp53 or Cdkn2a, but not Fbxw7 or Slc9a3 can cooperate with KrasG12D to generate primary sarcomas in mice. These results show that mutations in oncogenic Kras and either Fbxw7 or Slc9a3 are sufficient for transformation in vitro, but not for in vivo sarcomagenesis.


Leukemia ◽  
2021 ◽  
Author(s):  
Christiaan J. Stavast ◽  
Iris van Zuijen ◽  
Elena Karkoulia ◽  
Arman Özçelik ◽  
Antoinette van Hoven-Beijen ◽  
...  

AbstractMIR139 is a tumor suppressor and is commonly silenced in acute myeloid leukemia (AML). However, the tumor-suppressing activities of miR-139 and molecular mechanisms of MIR139-silencing remain largely unknown. Here, we studied the poorly prognostic MLL-AF9 fusion protein-expressing AML. We show that MLL-AF9 expression in hematopoietic precursors caused epigenetic silencing of MIR139, whereas overexpression of MIR139 inhibited in vitro and in vivo AML outgrowth. We identified novel miR-139 targets that mediate the tumor-suppressing activities of miR-139 in MLL-AF9 AML. We revealed that two enhancer regions control MIR139 expression and found that the polycomb repressive complex 2 (PRC2) downstream of MLL-AF9 epigenetically silenced MIR139 in AML. Finally, a genome-wide CRISPR-Cas9 knockout screen revealed RNA Polymerase 2 Subunit M (POLR2M) as a novel MIR139-regulatory factor. Our findings elucidate the molecular control of tumor suppressor MIR139 and reveal a role for POLR2M in the MIR139-silencing mechanism, downstream of MLL-AF9 and PRC2 in AML. In addition, we confirmed these findings in human AML cell lines with different oncogenic aberrations, suggesting that this is a more common oncogenic mechanism in AML. Our results may pave the way for new targeted therapy in AML.


Microbiology ◽  
2006 ◽  
Vol 152 (12) ◽  
pp. 3467-3476 ◽  
Author(s):  
Zhijun Wang ◽  
Zhenghong Yuan ◽  
Li Xiang ◽  
Junjie Shao ◽  
Grzegorz Węgrzyn

Effects of tRNAAla(UGC) and its derivative devoid of the 3′-ACCA motif [tRNAAla(UGC)ΔACCA] on the cleavage of the ColE1-like plasmid-derived RNA I were analysed in vivo and in vitro. In an amino-acid-starved relA mutant, in which uncharged tRNAs occur in large amounts, three products of specific cleavage of RNA I were observed, in contrast to an otherwise isogenic relA + host. Overexpression of tRNAAla(UGC), which under such conditions occurs in Escherichia coli mostly in an uncharged form, induced RNA I cleavage and resulted in an increase in ColE1-like plasmid DNA copy number. Such effects were not observed during overexpression of the 3′-ACCA-truncated tRNAAla(UGC). Moreover, tRNAAla(UGC), but not tRNAAla(UGC)ΔACCA, caused RNA I cleavage in vitro in the presence of MgCl2. These results strongly suggest that tRNA-dependent RNA I cleavage occurs in ColE1-like plasmid-bearing E. coli, and demonstrate that tRNAAla(UGC) participates in specific degradation of RNA I in vivo and in vitro. This reaction is dependent on the presence of the 3′-ACCA motif of tRNAAla(UGC).


Sign in / Sign up

Export Citation Format

Share Document