scholarly journals Human Interleukin 15 (IL15) Humanized NCG Mice Support the Human Natural Killer Cells Reconstitution and Development

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4871-4871
Author(s):  
Cunxiang Ju ◽  
Mingkun Zhang ◽  
Dan Wu ◽  
Jing Tang ◽  
Shuai Li ◽  
...  

NCG (GPT strain ID: T001475), one of the highly immune-deficient mouse models generated so far, is ideal for engraftment of human tissues and cells, such as patient derived tumors (PDX), human cancer cell lines (CDX), human peripheral blood mononuclear cells (PBMC) and human hematopoietic stem cells (HSCs). NK cells that are a critical component of the innate immune system have diverse biological functions, such as recognizing and killing viral-infected and neoplastic cells. Human HSCs (CD34+) could reconstitute human T but not NK cells in NCG mice. The cytokine Interleukin 15 (IL-15) plays a critical role in the generation of NK cells from HSCs. IL-15 is produced by non-lymphoid cells, including monocytes, dendritic and bone marrow stromal cells. Human and mouse IL-15 are only 70% identical to each other in primary amino acid sequence. Mouse IL-15 poorly supports the reconstitution of human NK cells. To overcome this problem, several lines of transgenic mice that express human IL-15 (hIL-15) have been established. However, the non-physiological levels of hIL-15 expression are detrimental to human immune system reconstitution.In the current study, we developed hIL-15 knock-in in NCG mice (NCG-hIL-15), in which the mouse IL-15 (mIL-15) gene was replaced by the hIL-15 gene. We quantified the mRNA expression of hIL-15 and found that the levels of hIL-15 expression in the BM, liver, lung, and small intestine of NCG-hIL-15 mice were similar to those of mIL-15 in NCG mice.Based on these data, we expect that NCG-hIL-15 mice can efficiently support the development, maturation and function of human NK cells. In the future, we will further study human NK cell engraftment and human NK cell-mediated cancer immunotherapy in NCG-hIL-15 mice. Taken together, our newly developed NCG-hIL-15 mice offer a novel mouse model for studying human NK cell biology and human NK-mediated cancer immunotherapy in vivo. Disclosures Ju: GemPharmatech Co., Ltd: Employment. Zhang:GemPharmatech Co., Ltd: Employment. Wu:GemPharmatech Co., Ltd: Employment. Tang:GemPharmatech Co., Ltd: Employment. Li:GemPharmatech Co., Ltd: Employment. Zhao:GemPharmatech Co., Ltd: Employment. Wang:GemPharmatech Co., Ltd: Employment. Gao:GemPharmatech Co., Ltd: Employment.

Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1589
Author(s):  
Ane Orrantia ◽  
Iñigo Terrén ◽  
Gabirel Astarloa-Pando ◽  
Olatz Zenarruzabeitia ◽  
Francisco Borrego

Natural killer (NK) cells are phenotypically and functionally diverse lymphocytes with the ability to recognize and kill malignant cells without prior sensitization, and therefore, they have a relevant role in tumor immunosurveillance. NK cells constitute the main lymphocyte subset in peripheral blood in the first week after hematopoietic stem cell transplantation (HSCT). Although the role that NK cells play in allogenic HSCT settings has been documented for years, their significance and beneficial effects associated with the outcome after autologous HSCT are less recognized. In this review, we have summarized fundamental aspects of NK cell biology, such as, NK cell subset diversity, their effector functions, and differentiation. Moreover, we have reviewed the factors that affect autologous HSCT outcome, with particular attention to the role played by NK cells and their receptor repertoire in this regard.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sizhe Liu ◽  
Vasiliy Galat ◽  
Yekaterina Galat4 ◽  
Yoo Kyung Annie Lee ◽  
Derek Wainwright ◽  
...  

AbstractNatural killer (NK) cell is a specialized immune effector cell type that plays a critical role in immune activation against abnormal cells. Different from events required for T cell activation, NK cell activation is governed by the interaction of NK receptors with target cells, independent of antigen processing and presentation. Due to relatively unsophisticated cues for activation, NK cell has gained significant attention in the field of cancer immunotherapy. Many efforts are emerging for developing and engineering NK cell-based cancer immunotherapy. In this review, we provide our current understandings of NK cell biology, ongoing pre-clinical and clinical development of NK cell-based therapies and discuss the progress, challenges, and future perspectives.


2021 ◽  
Vol 12 ◽  
Author(s):  
Laura Kiekens ◽  
Wouter Van Loocke ◽  
Sylvie Taveirne ◽  
Sigrid Wahlen ◽  
Eva Persyn ◽  
...  

T-bet and Eomes are transcription factors that are known to be important in maturation and function of murine natural killer (NK) cells. Reduced T-BET and EOMES expression results in dysfunctional NK cells and failure to control tumor growth. In contrast to mice, the current knowledge on the role of T-BET and EOMES in human NK cells is rudimentary. Here, we ectopically expressed either T-BET or EOMES in human hematopoietic progenitor cells. Combined transcriptome, chromatin accessibility and protein expression analyses revealed that T-BET or EOMES epigenetically represses hematopoietic stem cell quiescence and non-NK lineage differentiation genes, while activating an NK cell-specific transcriptome and thereby drastically accelerating NK cell differentiation. In this model, the effects of T-BET and EOMES are largely overlapping, yet EOMES shows a superior role in early NK cell maturation and induces faster NK receptor and enhanced CD16 expression. T-BET particularly controls transcription of terminal maturation markers and epigenetically controls strong induction of KIR expression. Finally, NK cells generated upon T-BET or EOMES overexpression display improved functionality, including increased IFN-γ production and killing, and especially EOMES overexpression NK cells have enhanced antibody-dependent cellular cytotoxicity. Our findings reveal novel insights on the regulatory role of T-BET and EOMES in human NK cell maturation and function, which is essential to further understand human NK cell biology and to optimize adoptive NK cell therapies.


2020 ◽  
Vol 9 (1) ◽  
pp. 143 ◽  
Author(s):  
Cinzia Fionda ◽  
Helena Stabile ◽  
Cristina Cerboni ◽  
Alessandra Soriani ◽  
Angela Gismondi ◽  
...  

Transforming growth factor (TGF)-β is a central immunosuppressive cytokine within tumor microenvironment inhibiting the expansion and function of major cellular components of adaptive and innate immune system. Among them, compelling evidence has demonstrated that TGF-β is a key regulator of natural killer (NK) cells, innate lymphoid cells (ILCs) with a critical role in immunosurveillance against different kinds of cancer cells. A TGF-β rich tumor microenvironment blocks NK cell activity at multiple levels. This immunosuppressive factor exerts direct regulatory effects on NK cells including inhibition of cytokine production, alteration of activating/inhibitory receptor expression, and promotion of the conversion into non cytotoxic group I ILC (ILC1). Concomitantly, TGF-β can render tumor cells less susceptible to NK cell-mediated recognition and lysis. Indeed, accumulating evidence suggest that changes in levels of NKG2D ligands, mainly MICA, as well as an increase of immune checkpoint inhibitors (e.g., PD-L1) and other inhibitory ligands on cancer cells significantly contribute to TGF-β-mediated suppression of NK cell activity. Here, we will take into consideration two major mechanisms underlying the negative regulation of ILC function by TGF-β in cancer. First, we will address how TGF-β impacts the balance of signals governing NK cell activity. Second, we will review recent advances on the role of this cytokine in driving ILC plasticity in cancer. Finally, we will discuss how the development of therapeutic approaches blocking TGF-β may reverse the suppression of host immune surveillance and improve anti-tumor NK cell response in the clinic.


Blood ◽  
2010 ◽  
Vol 116 (19) ◽  
pp. 3853-3864 ◽  
Author(s):  
Niklas K. Björkström ◽  
Peggy Riese ◽  
Frank Heuts ◽  
Sandra Andersson ◽  
Cyril Fauriat ◽  
...  

Abstract Natural killer (NK) cells are lymphocytes of the innate immune system that, following differentiation from CD56bright to CD56dim cells, have been thought to retain fixed functional and phenotypic properties throughout their lifespan. In contrast to this notion, we here show that CD56dim NK cells continue to differentiate. During this process, they lose expression of NKG2A, sequentially acquire inhibitory killer cell inhibitory immunoglobulin-like receptors and CD57, change their expression patterns of homing molecules, and display a gradual decline in proliferative capacity. All cellular intermediates of this process are represented in varying proportions at steady state and appear, over time, during the reconstitution of the immune system, as demonstrated in humanized mice and in patients undergoing hematopoietic stem cell transplantation. CD56dim NK-cell differentiation, and the associated functional imprint, occurs independently of NK-cell education by interactions with self–human leukocyte antigen class I ligands and is an essential part of the formation of human NK-cell repertoires.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Yuqing Cao ◽  
Xiaoyu Wang ◽  
Tianqiang Jin ◽  
Yu Tian ◽  
Chaoliu Dai ◽  
...  

Abstract Recent studies have demonstrated the potential of natural killer (NK) cells in immunotherapy to treat multiple types of cancer. NK cells are innate lymphoid cells that play essential roles in tumor surveillance and control that efficiently kill the tumor and do not require the major histocompatibility complex. The discovery of the NK’s potential as a promising therapeutic target for cancer is a relief to oncologists as they face the challenge of increased chemo-resistant cancers. NK cells show great potential against solid and hematologic tumors and have progressively shown promise as a therapeutic target for cancer immunotherapy. The effector role of these cells is reliant on the balance of inhibitory and activating signals. Understanding the role of various immune checkpoint molecules in the exhaustion and impairment of NK cells when their inhibitory receptors are excessively expressed is particularly important in cancer immunotherapy studies and clinical implementation. Emerging immune checkpoint receptors and molecules have been found to mediate NK cell dysfunction in the tumor microenvironment; this has brought up the need to explore further additional NK cell-related immune checkpoints that may be exploited to enhance the immune response to refractory cancers. Accordingly, this review will focus on the recent findings concerning the roles of immune checkpoint molecules and receptors in the regulation of NK cell function, as well as their potential application in tumor immunotherapy.


2017 ◽  
Vol 9 (5) ◽  
pp. 511-525 ◽  
Author(s):  
Sophie M. Poznanski ◽  
Amanda J. Lee ◽  
Tina Nham ◽  
Evan Lusty ◽  
Margaret J. Larché ◽  
...  

The combination of interleukin (IL)-18 and IL-12 (IL-18+IL-12) potently stimulates natural killer (NK) cells, triggering an innate immune response to infections and cancers. Strategies exploiting the effects of IL-18+IL-12 have shown promise for cancer immunotherapy. However, studies have primarily characterized the NK cell response to IL-18+IL-12 in terms of interferon (IFN)-γ production, with little focus on other cytokines produced. IL-8 plays a critical role in activating and recruiting immune cells, but it also has tumor-promoting functions. IL-8 is classically produced by regulatory NK cells; however, cytotoxic NK cells do not typically produce IL-8. In this study, we uncover that stimulation with IL-18+IL-12 induces high levels of IL-8 production by ex vivo expanded and freshly isolated NK cells and NK cells in peripheral blood mononuclear cells. We further report that tumor necrosis factor (TNF)-α, produced by NK cells following IL-18+IL-12 stimulation, regulates IL-8 production. The IL-8 produced is in turn required for maximal IFN-γ and TNF-α production. These findings may have important implications for the immune response to infections and cancer immunotherapies. This study broadens our understanding of NK cell function and IL-18+IL-12 synergy by uncovering an unprecedented ability of IL-18+IL-12-activated peripheral blood NK cells to produce elevated levels of IL-8 and identifying the requirement for intermediates induced by IL-18+IL-12 for maximal cytokine production following stimulation.


Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 394
Author(s):  
Calum Forrest ◽  
Ariane Gomes ◽  
Matthew Reeves ◽  
Victoria Male

Natural killer (NK) cells are innate lymphoid cells that recognize and eliminate virally-infected and cancerous cells. Members of the innate immune system are not usually considered to mediate immune memory, but over the past decade evidence has emerged that NK cells can do this in several contexts. Of these, the best understood and most widely accepted is the response to cytomegaloviruses, with strong evidence for memory to murine cytomegalovirus (MCMV) and several lines of evidence suggesting that the same is likely to be true of human cytomegalovirus (HCMV). The importance of NK cells in the context of HCMV infection is underscored by the armory of NK immune evasion genes encoded by HCMV aimed at subverting the NK cell immune response. As such, ongoing studies that have utilized HCMV to investigate NK cell diversity and function have proven instructive. Here, we discuss our current understanding of NK cell memory to viral infection with a focus on the response to cytomegaloviruses. We will then discuss the implications that this will have for the development of a vaccine against HCMV with particular emphasis on how a strategy that can harness the innate immune system and NK cells could be crucial for the development of a vaccine against this high-priority pathogen.


2004 ◽  
Vol 11 (5) ◽  
pp. 879-888 ◽  
Author(s):  
Sunwoong S. Choi ◽  
Vaninder S. Chhabra ◽  
Quoc H. Nguyen ◽  
Bonnie J. Ank ◽  
E. Richard Stiehm ◽  
...  

ABSTRACT Newborn infants have a higher susceptibility to various pathogens due to developmental defects in their host defense system, including deficient natural killer (NK) cell function. In this study, the effects of interleukin-15 (IL-15) on neonatal NK cells was examined for up to 12 weeks in culture. The cytotoxicity of fresh neonatal mononuclear cells (MNC) as assayed by K562 cell killing is initially much less than that of adult MNC but increases more than eightfold after 2 weeks of culture with IL-15 to a level equivalent to that of adult cells. This high level of cytotoxicity was maintained for up to 12 weeks. In antibody-dependent cellular cytotoxicity (ADCC) assays using CEM cells coated with human immunodeficiency virus gp120 antigen, IL-15 greatly increased ADCC lysis by MNC from cord blood. IL-15 increased expression of the CD16+ CD56+ NK markers of cord MNC fivefold after 5 weeks of incubation. Cultures of neonatal MNC with IL-15 for up to 10 weeks resulted in a unique population of CD3− CD8+ CD56+ cells (more than 60%), which are not present in fresh cord MNC. These results show that IL-15 can stimulate neonatal NK cells and sustain their function for several weeks, which has implications for the clinical use of IL-15.


Blood ◽  
2004 ◽  
Vol 104 (3) ◽  
pp. 873-880 ◽  
Author(s):  
Yiming Huang ◽  
Francine Rezzoug ◽  
Paula M. Chilton ◽  
H. Leighton Grimes ◽  
Daniel E. Cramer ◽  
...  

AbstractThe events that regulate engraftment and long-term repopulating ability of hematopoietic stem cells (HSCs) after transplantation are not well defined. We report for the first time that major histocompatibility complex (MHC) class I K plays a critical role in HSC engraftment via interaction with recipient natural killer (NK) cells. Durable engraftment of purified HSCs requires MHC class I K matching between HSC donor and recipient. In the absence of MHC class I K matching, HSCs exhibit impaired long-term engraftment (P = .01). Dependence on MHC class I K matching is eliminated in B6 beige mice that lack NK cell function, as well as in wild-type mice depleted of NK cells, implicating a possible regulatory role of NK cells for HSC engraftment. The coadministration of CD8+/T-cell receptor–negative (TCR-) graft facilitating cells (FCs) matched at MHC class I K to the HSC donor overcomes the requirement for MHC class I K matching between HSCs and recipient. These data demonstrate that FCs inhibit NK cell effects on the HSCs. Notably, FCs do not suppress the cytotoxic activity of activated NK cells. Enhanced green fluorescent protein–positive (EGFP+) FCs persist for one month following allogeneic transplantation, making cold target inhibition an unlikely mechanism. Therefore, MHC class I may play a critical role in the initiating events that dictate HSC engraftment and/or NK-mediated rejection following allogeneic transplantation.


Sign in / Sign up

Export Citation Format

Share Document