scholarly journals Identification of a Heme Activation Site on the MD-2/TLR4 Complex

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 209-209
Author(s):  
John D Belcher ◽  
Ping Zhang ◽  
Julia Nguyen ◽  
Zachary Monroe Kiser ◽  
John O Trent ◽  
...  

Lipopolysaccharide (LPS), the first-identified TLR4 agonist, binds myeloid differentiation factor-2 (MD-2) in association with TLR4 to initiate TLR4 signaling. LPS binds to a large hydrophobic pocket in MD-2 and directly bridges the MD-2/TLR4 heterodimer. The MD-2/TLR4 complex also recognizes a diverse number of endogenous molecules released from injured cells called damage-associated molecular patterns or DAMPs. One such DAMP is heme. Large amounts of heme can be released intravascularly by trauma, sepsis, malaria and red blood cell disorders such as sickle cell disease (SCD). Recent studies underscore the importance of heme-mediated MD-2/TLR4 activation in inflammation, vessel occlusion, lethality and pulmonary injury in SCD. Therefore, we examined human MD-2 for potential heme activation sites. Recombinant MD-2 (rMD-2) was produced by transfecting Chinese hamster ovary (CHO) cells with human MD-2 plasmids. After 72 hours, Western blots of the CHO-conditioned media demonstrated soluble rMD-2 was present. Heme was shown to bind rMD-2 using pull-down assays utilizing heme-agarose or biotin-heme with streptavidin-agarose coupled with MD-2 Western blots of the pellet. These pull-down assays of rMD2 were inhibited by excess heme, indicating specific binding of heme to rMD-2. UV/visible scanning spectroscopy (250 - 550 nm) of purified rMD-2 in the presence or absence of heme, confirmed specific rMD-2-heme binding. In silico analyses combining both structure and sequence-based methods, identified two potential heme docking sites on MD-2 near conserved amino acids W23/S33/Y34 and Y36/C37/I44 (Figure 1). To determine whether MD-2 mutations at these two sites affect heme-MD-2/TLR4 signaling, HEK293 cells were transfected with plasmids encoding human MD-2, TLR4, CD14 and an NF-κB luciferase reporter. After 24 hours, transfected cells were stimulated with heme (10 μM) or LPS (10 ng/ml) for 6 hours and NF-κB luciferase reporter activity was measured. Heme or LPS treatment elicited robust luciferase activity. The addition of both heme and LPS had an additive effect on NF-κB luciferase activity. Absence of an MD-2, TLR4 or CD14 plasmid abolished NF-κB luciferase reporter responses to heme and/or LPS. When plasmids encoding MD-2 point mutants W23A or Y34A were introduced into MD-2, heme-induced NF-κB luciferase activity was inhibited 91-92% compared to WT-MD-2. The S33A MD-2 mutant stimulated NF-κB luciferase activity by 40%. NF-κB activation by LPS was marginally affected by the same mutants. Biotin-heme/streptavidin-agarose pulled down 68% less W23A mutant MD-2 and 80% less W23A/S33A/Y34A mutant MD-2 than WT-MD-2. In contrast, at the other potential heme binding site, heme-induced NF-κB luciferase activity was increased in mutants Y36A (120%), C37A (121%) and I44A (230%) compared to WT-MD-2. These data suggest that amino acids W23 and Y34 on MD-2 are specific for heme binding and TLR4 signaling. This heme activation site was targeted for potential inhibitors using virtual screening. The virtual screen identified 60 potential inhibitors for screening in heme-stimulated primary human umbilical vein endothelial cells (HUVEC) and a human U-937 monocyte cell line. Four of these molecules inhibited Weibel-Palade body P-selectin and von Willebrand factor expression in HUVEC and IL-8 secretion by U-937 cells stimulated with heme. We conclude that heme activates MD-2/TLR4 signaling at residues W23 and Y34 on MD-2, which might be a drugable target in SCD and other hemolytic diseases. Disclosures Belcher: Mitobridge, an Astellas Company: Consultancy, Research Funding. Vercellotti:Mitobridge, an Astellas Company: Consultancy, Research Funding.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 208-208
Author(s):  
Ping Zhang ◽  
John D Belcher ◽  
Julia Nguyen ◽  
Fuad Abdulla ◽  
Gregory M Vercellotti

Sickle cell disease (SCD) is the most common hemoglobinopathy worldwide, resulting from a mutation in the beta globin gene. SCD has significant pathophysiological consequences -- hemolysis, inflammation, oxidative stress, hypercoagulability, endothelial dysfunction and painful vaso-occlusive crises. The latter can be precipitated by infection or other metabolic stressors. Hemolysis chronically exposes endothelial cells, leukocytes, and platelets to hemoglobin and heme that promote pro-inflammatory and prothrombotic phenotypes. We previously demonstrated that toll-like receptor 4 (TLR4) signaling is required for microvascular stasis induced by hemoglobin, heme, or lipopolysaccharide (LPS) in sickle mice. MD-2 is a glycoprotein, co-expressed with TLR4 at the surface of various cell types, principally myeloid and endothelial lineages. MD-2 also exists as a soluble plasma protein (sMD-2), mainly as a large disulfide-bound multimeric glycoprotein, as well as oligomers and monomers. sMD-2 binds LPS and confers TLR4 sensitivity to LPS . A marked increase in sMD-2 has been reported in plasma from patients with sepsis and rheumatoid arthritis. sMD-2 in SCD plasma has not been studied. Since SCD has a pro-inflammatory phenotype, we hypothesized that sMD-2 is increased in SCD plasma and promotes pro-inflammatory signaling of endothelial cells. We assessed plasma levels of sMD-2 by Western blot and found that sMD-2 was increased 1.7-fold in SS human plasma (n=8) compared to healthy AA plasma (p<0.05, n=7). In mice, plasma sMD-2 was increased 7.6-fold in Townes-SS sickle mice (n=9) compared to control Townes-AA mice (p<0.0002, n=7). In contrast, plasma CD14, another required component of LPS-TLR4 signaling, was not significantly different in SS humans (n=8) and SS mice (n=9) compared to AA controls (p<0.05). The liver is one potential source of sMD-2 in plasma. In mice, hepatic MD-2 mRNA was increased 2.1-fold in SS compared to AA (p<0.05, n=6). Activated vascular endothelium is another potential source and target of sMD-2 in plasma. It has been reported by other groups and confirmed by us that LPS induces sMD-2 secretion by human umbilical vein endothelial cells (HUVEC). To determine whether heme can induce sMD-2 secretion from endothelial cells, we treated HUVEC with heme (0-30 μM) for 18 hours and found heme increased sMD-2 in media in a dose-responsive manner. To determine if sMD-2 in plasma could activate TLR4 signaling in endothelial cells, we incubated HUVEC with 2% SS or AA human plasma for 18 hours and measured IL-8 in the media by ELISA. Media IL-8 concentration was 2.6-fold higher in HUVEC incubated with SS plasma compared to AA plasma (p<0.02, n=4). Tak242, a TLR4 signaling inhibitor, blocked IL-8 secretion by HUVEC + SS plasma. Since heme has been shown to activate TLR4 signaling, we examined whether heme could bind to sMD-2 in plasma using a heme-agarose pull-down assay. Human plasma was incubated with heme-agarose to pull down heme binding proteins, followed by Western blot for sMD-2 protein in the pellet. The blot confirmed that sMD-2 in plasma bound specifically to heme. When sMD-2 was removed from SS plasma using an anti-MD-2 affinity column, the sMD-2-depleted plasma reduced IL-8 secretion by HUVEC by 34.3% (p<0.002, n=4). Furthermore, when the high-affinity heme-binding protein hemopexin (10 μM) was added to SS plasma, IL-8 secretion by HUVEC was reduced by 31.6% (p<0.01, n=7). Next, we made recombinant human sMD-2 in CHO cells with protein-free ProCHO medium. UV/Vis absorption spectra (250-600 nm) and heme-agarose pull-down assays found there was heme bound to recombinant sMD-2 in the ProCHO medium. When recombinant sMD-2-heme was added to human AA plasma and incubated with HUVEC, IL-8 secretion increased 2.2-fold (p<0.004, n=3). TLR4 inhibitor Tak242 blocked this increase in IL-8 secretion. When hemopexin was added to the recombinant sMD-2-heme before adding it to AA plasma, IL-8 production was reduced 38% compared to non-hemopexin treated (p<0.01, n=7). In conclusion, these data indicate that sMD-2 is increased in SCD plasma, binds heme, and can stimulate endothelial cell IL-8 production through a TLR4-dependent mechanism. We speculate that sMD-2 bound to heme might play an important role in pro-inflammatory signaling by endothelium in SCD. Disclosures Belcher: Mitobridge, an Astellas Company: Consultancy, Research Funding. Vercellotti:Mitobridge, an Astellas Company: Consultancy, Research Funding.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Guo Chen ◽  
Lan Luo ◽  
Miao-Miao Zhang ◽  
Shou-Quan Wu ◽  
Yu Wang ◽  
...  

Background. The Myosin Heavy Chain 15 gene (MYH15) is expressed in the airway epithelium and variants in the gene have been associated with airway responsiveness. The aim of this study was to perform the first investigation of MYH15 polymorphisms in relation to asthma susceptibility. Methods. A total of 410 asthma patients and 418 controls from the Chinese Han population were enrolled in the study. Tag-single nucleotide polymorphisms were genotyped and associations between the polymorphisms and asthma risk were analyzed by logistic regression analysis adjusting for confounding factors. Dual-luciferase reporter gene analysis was performed to detect allele-dependent promoter activity of MYH15 variants in HEK293 cells. Results. The A allele of rs9288876 decreased risk of asthma (allelic model: OR=0.808, 95% CI: 0.658-0.993, additive model: OR=0.747, 95% CI: 0.588-0.947, dominant model: OR=0.693, 95% CI: 0.502-0.955). The G alleles of both rs7635009 and rs1454197 were associated with decreased risk of asthma under the additive model (OR=0.779, 95% CI: 0.618-0.981 and OR=0.756, 95% CI: 0.600-0.953, respectively). rs9288876 allele A was associated with higher luciferase activity than allele T (P<0.001). The luciferase activity of rs7635009 allele A was lower than allele G (P=0.001), while rs1454197 allele T had lower luciferase activity than allele G (P<0.001). Conclusion. This is the first study to report the association of MYH15 gene polymorphisms with asthma. Polymorphisms of rs9288876, rs7635009, and rs1454197 altered transcriptional regulation of MYH15 and may be functional variants conferring susceptibility to asthma. Further study with larger sample size in different ethnic populations is needed.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Luis R Hoyos ◽  
Jenny A Visser ◽  
Anke McLuskey ◽  
Gregorio D Chazenbalk ◽  
Tristan R Grogan ◽  
...  

Abstract Anti-Müllerian hormone (AMH), an inhibitor of primordial/small antral follicle development and Leydig cell androgen synthesis in mice, could exaggerate the polycystic ovary syndrome (PCOS) phenotype, given reports of PCOS-specific AMH loss-of-function mutations (1–3). This report describes a normal-weight PCOS woman with severely reduced AMH levels (index PCOS woman). It examines the molecular basis for her reduced serum AMH levels and also compares her endocrine characteristics to similar-weight PCOS women with detectable AMH. Twenty normo-androgenic ovulatory (control) and 13 age- and body mass index-matched PCOS women (19–35 years; 19–25 kg/m2) underwent transvaginal sonography and serum hormone measures. Wilcoxon rank-sum test compared clinical features of control and PCOS women with detectable AMH, which were then individually ranked by magnitude in all PCOS women. DNA analysis was performed by PCR amplification with direct gene sequencing. The identified mutation was introduced in hAMH-expression plasmids for functional analysis of AMH processing in HEK293 cells by Western blot and ELISA (pico-AMH assay, Ansh Labs, Webster, TX), and for bioactivity in KK-1/AMHR2 cells using a luciferase reporter. Unpaired t-test compared AMH-induced luciferase activity between wild type and mutant AMH. A homozygous AMH gene mutation rs10417628 involving a single base pair substitution in exon 5 (NG_012190.1:g.7705C&gt;T, p.(Ala515Val)) was identified in the index PCOS woman. PCOS women with detectable AMH had higher serum AMH (10.82 [6.74–13.40] ng/mL, Median [IQR]), total/free testosterone (T) (total T: 55.5 [49.5–62.5] ng/dL; fT: 5.65 [4.75–6.6] pg/mL) levels and greater total antral follicle numbers (AFNs) (46 [39–59] follicles) than controls (AMH: 4.03 [2.47–6.11] ng/ml; total T: 30 [24.5–34.5] ng/dL; fT: 2.2 [1.8–2.45] pg/mL; AFNs 16 [14.5–21.5] follicles, P&lt;0.05, all values), along with a trend toward LH hypersecretion (P=0.06). The index PCOS woman with the lowest AMH levels (0.1 ng/ml) did not have the highest serum total T/fT (total T: 89 ng/dL; fT: 7 pg/mL,) or LH levels nor the greatest AFN (43 follicles). In vitro analysis of cells expressing hAMH-515Val or hAMH-515Ala showed that hAMH515-Val, in contrast to hAMH515-Ala, was undetectable and severely reduced in the pico-AMH assay in cell lysates and supernatants, respectively. AMH protein processing and AMH-induced luciferase activity, however, did not differ between hAMH515Val and hAMH515Ala. Thus, homozygous AMH mutation rs10417628 in a PCOS woman can impair serum AMH immunoreactivity without affecting AMH bioactivity, perhaps because of conformational changes from the mutation that only interfere with its immunodetection but not its function. References: 1. Teixeira J, et al. Endocrinology 1999;140:4732 2. Gorsic LK et al. JCEM 2019;104:2855 3. Broekmans FJ, et al. Trends Endocrinol Metab 2008;19:340


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2271-2271
Author(s):  
Arjan van der Flier ◽  
Zhiqian Lucy Liu ◽  
Zhan Liu ◽  
Oblaise Mercury ◽  
Ayman Ismail ◽  
...  

Abstract INTRODUCTION Prophylactic treatment for hemophilia B patients is the therapy of choice to improve quality of life and minimize annual bleeding rates and damage to joints. A new generation of extended half-life (EHL) FIX replacement products has been generated to improve patient care by reducing treatment burden. The factors include the currently marketed rFIXFc, as well as rFIX attached to PEG or albumin. The latter two are in clinical trials. All FIX preparations are administered by intravenous dosing, which can be particularly challenging for young patients and patients with limited venous access; these difficulties are reduced, but not eliminated, by the less frequent dosing achieved with EHL rFIX therapies. In the current study, we evaluate an XTEN-recombinant protein technology in order to develop EHL rFIX-XTEN molecules that are suitable for both acute treatment, as well as prophylactic subcutaneous dosing in hemophilia B, and could potentially further reduce the burden of treatment. XTEN are unstructured polypeptide sequences that consist of a limited set of natural amino acids (Pro, Ala, Gly, Glu, Ser, Thr). Fusion of XTEN to proteins alters its hydrodynamic properties and reduces the rate of clearance and degradation of the fusion protein. These XTEN fusion proteins are produced using recombinant technology, without the need for chemical modifications, and degraded by natural pathways. MATERIALS AND METHODS Recombinant FIX and FIXFc molecules were expressed as the natural Arg338Leu (R388L, Padua) variant with improved activity. XTEN polypeptides are fused to either the C-terminus of rFIX or inserted into the EGF2 domain or activation peptide (AP) domain of rFIX or rFIXFc. The fusion proteins were prepared by transient expression in human HEK293 cells followed by affinity purification. Hemophilia B (HemB) mice were dosed by either intravenous or subcutaneous injection with a single bolus of 50 or 200 IU/kg of the rFIX- or rFIXFc-fusion proteins. Plasma activity levels were determined over time using a FIX activated partial thromboplastin time assay (aPTT). PK parameters were determined using non-compartmental modeling with Phoenix WinNonlin 6.2.1 (Pharsight). RESULTS Insertion of XTEN sequences with increasing length (42, 72, 144 or 288 amino acids long) at either C-terminus of rFIX-R338L or in the AP domain showed a size dependent increase in plasma recovery up to 60% following intravenous bolus dosing. Combinations of XTEN insertions in the EGF2 or AP domain with Fc-mediated half-life extension in rFIXFc-R338L, extended the half-life as well as increased the plasma recovery. The AUC/D for rFIX-CT-XTEN.288 and rFIXFc-AP-XTEN.72 were 8.5 and 14.5 fold improved when compared to intravenously dosed rFIX, respectively. Following a subcutaneous dose of either rFIXFc-AP-XTEN.72 or rFIX-CT-XTEN.288, we observed 28 and 40-fold improved AUC/D; 15- and 30-fold improved Cmax/D and 3-fold increased bioavailability. When compared to rFIXFc the improvement in pharmacokinetic parameters was 6- and 9-fold improved AUC/D; 3- and 10-fold Cmax/D and 1.5- and 2-fold improved bioavailability for FIXFc-AP-XTEN.72 and rFIX-CT-XTEN.288, respectively. Taken together, subcutaneous dosing of rFIX-CT-XTEN.288 and rFIXFc-AP-XTEN.72 in HemB mice showed improved AUC/D when compared to intravenous dosing of rFIXFc. CONCLUSIONS rFIXFc-AP-XTEN.72 and rFIX-CT-XTEN.288 show greatly improved subcutaneous pharmacokinetics in HemB mice compared to both rFIX and rFIXFc. These promising preclinical subcutaneous dosing data in HemB mice suggests the potential of once weekly or every two weeks prophylactic subcutaneous dosing of FIX-XTEN molecules in patients. In addition, the molecules have potential for acute treatment by intravenous dosing. Further studies are ongoing to address the efficacy and allometric scaling in preclinical animal models. Disclosures van der Flier: Biogen: Employment. Liu:Biogen: Employment. Liu:Biogen: Employment, Equity Ownership, Honoraria, Research Funding. Mercury:Biogen: Employment. Ismail:Biogen: Employment. Seth-Chhabra:Biogen: Employment, Equity Ownership, Honoraria, Patents & Royalties, Research Funding. Kulman:Biogen: Employment. Schellenberger:Amunix Operating Inc: Employment. Light:Biogen: Employment, Equity Ownership. Peters:Biogen: Employment.


2021 ◽  
Vol 22 (11) ◽  
pp. 5590
Author(s):  
Clément Veys ◽  
Abderrahim Benmoussa ◽  
Romain Contentin ◽  
Amandine Duchemin ◽  
Emilie Brotin ◽  
...  

Chondrosarcomas are malignant bone tumors. Their abundant cartilage-like extracellular matrix and their hypoxic microenvironment contribute to their resistance to chemotherapy and radiotherapy, and no effective therapy is currently available. MicroRNAs (miRNAs) may be an interesting alternative in the development of therapeutic options. Here, for the first time in chondrosarcoma cells, we carried out high-throughput functional screening using impedancemetry, and identified five miRNAs with potential antiproliferative or chemosensitive effects on SW1353 chondrosarcoma cells. The cytotoxic effects of miR-342-5p and miR-491-5p were confirmed on three chondrosarcoma cell lines, using functional validation under normoxia and hypoxia. Both miRNAs induced apoptosis and miR-342-5p also induced autophagy. Western blots and luciferase reporter assays identified for the first time Bcl-2 as a direct target of miR-342-5p, and also Bcl-xL as a direct target of both miR-342-5p and miR-491-5p in chondrosarcoma cells. MiR-491-5p also inhibited EGFR expression. Finally, only miR-342-5p induced cell death on a relevant 3D chondrosarcoma organoid model under hypoxia that mimics the in vivo microenvironment. Altogether, our results revealed the tumor suppressive activity of miR-342-5p, and to a lesser extent of miR-491-5p, on chondrosarcoma lines. Through this study, we also confirmed the potential of Bcl-2 family members as therapeutic targets in chondrosarcomas.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xu Zhou ◽  
Jingliang He ◽  
Jinbo Chen ◽  
Yu Cui ◽  
Zhenyu Ou ◽  
...  

Abstract Background Leydig cells reflect the activation of inflammation, decrease of androgen production, inhibition of cell growth and promotion of cell apoptosis under orchitis. Maternally expressed gene 3 (MEG3) exerts a crucial role in various human diseases, but under orchitis, the role and underlying molecular mechanism of MEG3 in Leydig cells remain unclear. Methods Lipofectamine 2000 was used for the cell transfections. qPCR and western blots assay were applied to assess the gene expression. ELISA assay was used to measure the TNFα, IL6 and testosterone secretion. CCK8 and EdU assay was employ to test the cell viability and proliferation respectively. Luciferase reporter and RIP assay were introduced to detect the binding of miR-93-5p with MEG3 and PTEN. Results Lipopolysaccharides (LPS) induced TNFα and IL6 secretion, lowered testosterone production, inhibited cell viability and proliferation, and induced cell apoptosis in Leydig cells. MEG3 was upregulated in Leydig cells treated with LPS and that knockdown of MEG3 inhibited the role of LPS in Leydig cells. MEG3 absorbed miR-93-5p and that suppression of miR-93-5p restored the role of silenced MEG3 in Leydig cells under LPS treatment. miR-93-5p inhibited PTEN expression and that over-expressed PTEN alleviated the effect of miR-93-5p in Leydig cells treated with LPS. LPS activated the MEG3/miR-93-5p/PTEN signalling pathway in Leydig cells. Conclusions This study revealed that MEG3 serves as a molecular sponge to absorb miR-93-5p, thus leading to elevation of PTEN expression in Leydig cells under LPS treatment, offering a theoretical basis on which to establish potential new treatment strategies for orchitis.


1989 ◽  
Vol 257 (2) ◽  
pp. 461-469 ◽  
Author(s):  
G E Morris

Chemical cleavage at cysteine residues with nitrothiocyanobenzoic acid shows that the last 98 amino acids of the 380-amino-acid sequence of chick muscle creatine kinase are sufficient for binding of the monoclonal antibody CK-ART. Removal of the last 30 amino acids by cleavage at methionine residues with CNBr results in loss of CK-ART binding. CK-ART binding is also lost when these C-terminal methionine residues are oxidized to sulphoxide, but binding is regained on reduction. Proteinase K ‘nicks’ native CK at a single site near the C-terminus and two fragments of 327 amino acides and 53 amino acids can be separated by subsequent SDS or urea treatment. CK-ART still binds normally to ‘nicked’ CK, which is enzymically inactive. After treatment with either urea (in a competition enzyme-linked immunosorbent assay) or SDS (on Western blots), however, CK-ART binds to neither of the two fragments, although these treatments do not affect binding to intact CK. This suggests that parts of both CK fragments contribute to the CK-ART epitope. CK-ART is both species- and isoenzyme-specific, binding only to chick M-CK. The only C-terminal regions containing chick-specific sequences are residues 300-312 and residues 368-371, the latter group being close to the essential methionine residues. We suggest that one, or possibly both, of these regions is involved in forming the conformational epitope on the surface of the CK molecule which CK-ART recognizes. Native CK is resistant to trypsin digestion. The C-terminal half of urea-treated and partly-refolded CK is also resistant to trypsin digestion, whereas the N-terminal half is readily digested. The results suggest a C-terminal region which can refold more rapidly than the rest of the CK molecule and provide evidence for an intermediate in CK refolding.


1998 ◽  
Vol 274 (3) ◽  
pp. C681-C687 ◽  
Author(s):  
Steven J. Swoap

The myosin heavy chain (MHC) IIB gene is preferentially expressed in fast-twitch muscles of the hindlimb, such as the tibialis anterior (TA). The molecular mechanism(s) for this preferential expression are unknown. The goals of the current study were 1) to determine whether the cloned region of the MHC IIB promoter contains the necessary cis-acting element(s) to drive fiber-type-specific expression of this gene in vivo, 2) to determine which region within the promoter is responsible for fiber-type-specific expression, and 3) to determine whether transcription off of the cloned region of the MHC IIB promoter accurately mimics endogenous gene expression in a muscle undergoing a fiber-type transition. To accomplish these goals, a 2.6-kilobase fragment of the promoter-enhancer region of the MHC IIB gene was cloned upstream of the firefly luciferase reporter gene and coinjected with pRL-cytomegalovirus (CMV) (CMV promoter driving the renilla luciferase reporter) into the TA and the slow soleus muscle. Firefly luciferase activity relative to renilla luciferase activity within the TA was 35-fold greater than within the soleus. Deletional analysis demonstrated that only the proximal 295 base pairs (pGL3IIB0.3) were required to maintain this muscle-fiber-type specificity. Reporter gene expression of pGL3IIB0.3 construct was significantly upregulated twofold in unweighted soleus muscles compared with normal soleus muscles. Thus the region within the proximal 295 base pairs of the MHC IIB gene contains at least one element that can drive fiber-type-specific expression of a reporter gene.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10374
Author(s):  
Ying Jin ◽  
Xiaoyan Sun ◽  
Fang Pei ◽  
Zhihe Zhao ◽  
Jeremy Mao

Background Periosteum plays critical roles in de novo bone formation and fracture repair. Wnt16 has been regarded as a key regulator in periosteum bone formation. However, the role of Wnt16 in periosteum derived cells (PDCs) osteogenic differentiation remains unclear. The study goal is to uncover whether and how Wnt16 acts on the osteogenesis of PDCs. Methods We detected the variation of Wnt16 mRNA expression in PDCs, which were isolated from mouse femur and identified by flow cytometry, cultured in osteogenic medium for 14 days, then knocked down and over-expressed Wnt16 in PDCs to analysis its effects in osteogenesis. Further, we seeded PDCs (Wnt16 over-expressed/vector) in β-tricalcium phosphate cubes, and transplanted this complex into a critical size calvarial defect. Lastly, we used immunofluorescence, Topflash and NFAT luciferase reporter assay to study the possible downstream signaling pathway of Wnt16. Results Wnt16 mRNA expression showed an increasing trend in PDCs under osteogenic induction for 14 days. Wnt16 shRNA reduced mRNA expression of Runx2, collage type I (Col-1) and osteocalcin (OCN) after 7 days of osteogenic induction, as well as alizarin red staining intensity after 21days. Wnt16 also increased the mRNA expression of Runx2 and OCN and the protein production of Runx2 and Col-1 after 2 days of osteogenic stimulation. In the orthotopic transplantation assay, more bone volume, trabecula number and less trabecula space were found in Wnt16 over-expressed group. Besides, in the newly formed tissue Brdu positive area was smaller and Col-1 was larger in Wnt16 over-expressed group compared to the control group. Finally, Wnt16 upregulated CTNNB1/β-catenin expression and its nuclear translocation in PDCs, also increased Topflash reporter luciferase activity. By contrast, Wnt16 failed to increase NFAT reporter luciferase activity. Conclusion Together, Wnt16 plays a positive role in regulating PDCs osteogenesis, and Wnt16 may have a potential use in improving bone regeneration.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3073-3073
Author(s):  
Cesarina Giallongo ◽  
Daniele Tibullo ◽  
Giuseppina Camiolo ◽  
Fabrizio Puglisi ◽  
Daniela Cambria ◽  
...  

BACKGROUND Multiple myeloma (MM) is a B-cell malignancy critically dependent for survival and proliferation on signals coming from its inflammatory microenvironment in which toll-like receptors (TLR) may be potential linking elements between inflammation and cancer. It has been recently demonstrated that TLR4 pathway provides a protective effect against bortezomib (BTZ)-induced endoplasmic reticulum (ER) stress and pre-treatment of MM cells with LPS significantly reduces BTZ-induced apoptosis. AIM Since the acquisition of BTZ resistance is accompanied by an increased reliance on mitochondrial respiration, we investigated the role of TLR4 as stress-responsive mechanism that protect mitochondria during BTZ-induced ER stress as potential mechanism of drug resistance. RESULTS The activation of TLR4 signaling by LPS increased mitochondrial mass in human MM cell lines (HMCL: U266, MM1.S, OPM2, NCI-H929) and induced up-regulation of mitochondrial biogenesis markers (PGC1a, PRC and TFAM). After treatment with BTZ for 24h, all HMCL over-expressed TLR4 and its signaling was functional as suggested by up-regulation of MyD88 and MAPK activation. Compared to BTZ-sensitive cells (U266-S), U266-R showed higher levels of TLR4, p-p38 and p-ERK proteins and higher mitochondrial mass. Using a selective TLR4 inhibitor (TAK-242), we next treated U266-R cells with either 15nM BTZ, 20 μM TAK-242 or their combination. Combinatorial treatment significantly induced cell apoptosis (about 52%; p<0.001) that appeared to result from the deleterious effects of oxidative stress. Indeed, BTZ-induced intracellular ROS returned to normal levels after 3h and cells were able to up-regulate two anti-oxidant enzymes (GPX1 and GSTP1). On the contrary, TAK-242/BTZ activated a strong pro-oxidant status incresing ROS and RNS (reactive nitrogen species) levels, decreasing GSH ones and down-regulating GPX1 and GSTP1. Analyzing the effect of each treatment on mitochondrial polarization status, we observed about 6,7% of depolarized mitochondria after BTZ treatment, while TAK-242/BTZ combination induced a mitochondrial depolarization of about 69,3% (p<0.001). Moreover, cells treated with BTZ alone showed a compensatory up-regulation of the OXPHOS- (NDUFA-6 and MT-ND4) and mitochondrial fusion-related genes (mitofusin and OPA1) and TFAM. On the contrary, all these genes were down-regulated by TAK-242/BTZ combination. Also a dramatic drop in mitochondrial respiration was observed with a marked decrease in ATP production, consequent accumulation of AMP and a decreased NAD+/NADH and NADP+/NADPH ratio. Since high levels of oxidative stress and mitochondrial impairment activate mitophagy sensitizing cells to apoptosis, we evaluated co-localization of mitochondria (stained with MitoTracker) with the autophagosome marker LC3 using confocal microscopy. BTZ and TAK-242/BTZ increased Mitotracker/LC3 co-localization respectively of about 4,5 and 50 fold compared with control (BTZ vs combination: p<0.001). To evaluate whether TLR4 inhibition resensitizes resistant primary cells, CD138+ cells derived from 5 refractory/relapsed MM patients were treated with 5nM BTZ, 10mM TAK-242 or their combination. Compared to BTZ alone, combination treatment induced higher mitochondrial depolarization after 24h and significantly decreased viability of CD138+ cells after 48h. TLR4 inhibitor alone or in combination did never show cytotoxicity toward CD138- cells. CONCLUSION Taken together, these findings indicate thatTLR4 signaling is involved in the acquisition of bortezomib resistance protecting mitochondria during BTZ exposure and sustaining mitochondrial dynamics in BTZ-resitant cells. Inhibition of TLR4 may overcome bortezomib resistance in patients with relapsed/refractory MM. Disclosures Conticello: Celgene: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria, Research Funding. Palumbo:Celgene: Honoraria; Amgen: Honoraria; Hospira: Honoraria; Teva: Honoraria; Novartis: Honoraria; Janssen: Honoraria. Di Raimondo:Takeda: Consultancy; Amgen: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document