Gene Risk Scores Based on Expression of 6 Genes Quanitated by Nuclease Protection Assay in Formalin Fixed Paraffin-Embedded Tissue (FFPET) Specimens From CHOP and RCHOP Treated Patients with Diffuse Large B-Cell Lymphoma (DLBCL) Predict Outcome: An ECOG and SWOG Study

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 87-87
Author(s):  
Jane N. Winter ◽  
Fangxin Hong ◽  
Lisa M. Rimsza ◽  
Michael LeBlanc ◽  
Daina Variakojis ◽  
...  

Abstract Abstract 87 Background: The International Prognostic Index (IPI) remains the most powerful predictor of clinical outcome in DLBCL in the R-CHOP era, serving as a useful surrogate for the biology we are just beginning to understand. With a follow-up of more than 9 years, its uniformly staged and treated patients and its prospectively collected unstained slides for correlative studies, the clinical data set from E4494, the US Intergroup trial comparing CHOP and RCHOP in patients >60 years with DLBCL, stands as a valuable resource for investigating prognosis in DLBCL. Based on immunohistochemistry, we previously showed that rituximab modulates the prognostic significance of some biomarkers in DLBCL. With these same specimens, the quantitative nuclease protection assay (qNPA), a methodology for measuring mRNA levels in FFPET, was used to develop separate prognostic signatures for the CHOP and RCHOP arms that can be simply applied using stored unstained slides. Methods: Five micron unstained FFPET sections from 183 eligible and evaluable cases enrolled on E4494 and submitted for prospective immunohistochemical correlative studies more than ten years ago were used for this analysis. Tissue was scraped from slides and a multiplexed qNPA was performed in triplicate using a customized Array Plate assay (HTG, Inc) for 43 genes of interest. TBP served as a housekeeping gene. Association between standardized log gene expression and patient failure-free survival (FFS) and overall survival (OS) was obtained using the Cox proportional hazards model. A weighted analysis was used to eliminate the confounding effect of maintenance rituximab. Genes that showed at least marginal significance in the univariate analysis were used to perform LASSO (penalized method to select best subset) to select a final list of genes in the multivariate analysis. Using the predictive model for either CHOP or R-CHOP induction, individual risk scores were calculated based on the multivariable model, and cases were dichotomized into low and high risk groups based on the median risk score. The model was then validated using the Lenz dataset (NEJM, 2008). Results: In six cases, tissue from slides prepared >10 years ago was compared to freshly cut sections from corresponding blocks, and showed excellent concordance (corr=0.86). On-study characteristics for the 176 cases with analyzable data were representative of the greater E4494 patient population. Six gene predictors were developed for each arm of the trial: RCHOP: FN1, LMO2, AKT1, HIF1a, AKT3, BCL2; and CHOP: PDCD4, HLADRB1, COL3A1, LMO2, ROBO4, TP53. Both signatures proved powerful predictors of FFS and OS among CHOP (FFS: p=0.0031; OS: p=0.0013) and RCHOP (FFS: p=0.001; OS=p=0.0015) treated patients. When adjusted for the clinically-based IPI, the gene-risk score retained its significance (CHOP: FFS p=0.0007; OS p=0.0011; RCHOP: FFS p=0.003; OS, p=0.001) while the IPI became only marginally significant (CHOP: FFS: p=0.06, OS p=0.06; R-CHOP: FFS p=0.09, OS p=0.02), suggesting that the gene predictor accounted for much of the predictive power of the IPI. The predictive model was then validated using the Lenz dataset for OS. The predictor models for CHOP and R-CHOP-treated patients effectively dichotomized patients into prognostic subgroups (CHOP: p<0.0001; RCHOP: p=0.0014; see figure below) and this difference was maintained when the subset over age 60 was analyzed (CHOP: p=0.0008; RCHOP: p=0.017). When adjusted for the IPI, the molecular predictor developed for CHOP treated patients remained robust (OS: P=.0001; HR 2.39), while the molecular predictor for RCHOP predicted OS marginally (p=.06; HR 1.82), with shorter followup than the CHOP cohort. Conclusions: Unstained slides from FFPET stored for many years may be used to investigate gene expression in lymphoma biopsy specimens for which there is mature followup. Gene risk scores based on the expression of a limited number of genes are powerful predictors of clinical outcome. Disclosures: Pollock: HTG, Inc.: Employment, Equity Ownership. Botros:HTG, Inc.: Employment, Equity Ownership. Horning:Genentech: Employment, Equity Ownership.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2608-2608
Author(s):  
Claudia Gebhard ◽  
Roger Mulet-Lazaro ◽  
Lucia Schwarzfischer ◽  
Dagmar Glatz ◽  
Margit Nuetzel ◽  
...  

Abstract Acute myeloid leukemia (AML) represents a highly heterogeneous myeloid stem cell disorder classified based on various genetic defects. Besides genetic alterations, epigenetic changes are recognized as an additional mechanism contributing to leukemogenesis, but insight into the latter process remains minor. Using a combination of Methyl-CpG-Immunoprecipitation (MCIp-chip) and MALDI-TOF analysis of bisulfite-treated DNA in a cohort of 196 AML patients we previously demonstrated that (cyto)genetically defined AML subtypes, including CBFB-MYH11, AML-ETO, NPM1-mut, CEBPA-mut or IDH1/2-mut subtypes, express specific DNA-methylation profiles (Gebhard et al, Leukemia, 2018). A fraction of AML patients (5/196) displayed a unique abnormal hypermethylation profile that was completely distinct from any other AML subtype. These patients present immature leukemia (FAB M0, M1) with various chromosomal aberrations but very few mutations (e.g. no IDH1/2, KRAS, DNMT3A) that might explain the CpG island methylator phenotype (CIMP) phenotype. The CIMP patients showed high resemblance with a recently reported CEBPA methylated subgroup (Wouters et al, 2007 and Figueroa et al, 2009), which we confirmed by MCIp-chip and MALDI-TOF analysis. To explore the whole range of epigenetic alterations in the CIMP-AML patients we performed in-depth global DNA methylation and gene expression analyses (MCIp-seq and RNA-seq) in 45 AML and 12 CIMP patients from both studies. Principle component analysis and t-distributed stochastic neighbor embedding (t-SNE) revealed that CIMP patients express a unique DNA-methylation and gene-expression signature that separated them from all other AMLs. We could discriminate promoter methylation from non-promoter methylation by selecting MCIp-seq peaks within 3kb around TSS. Promoter hypermethylation was highly associated with repression of genes (PCC = -0.053, p-value = 0.00075). Hypermethylation of non-promoter regions was more strongly associated with upregulation of genes (PCC = 0.046, p-value = 4.613e-06). Interestingly, differentially methylated regions also showed a positive association with myeloid lineage CTCF binding sites (27% vs 18% expected, p-value < 2.2e-16 in a chi-square test of independence). Methylation of CTCF sites causes loss of CTCF binding, which has been reported to disrupt boundaries between so-called topologically associated domains (TADs), allowing enhancers located in a particular TAD to become accessible to genes in adjacent TADs and affect their transcription. Whether this is the case is under investigation. In this study we particularly focused on the role of hypermethylation of promoters in CIMP-AMLs. Promoters of many transcriptional regulators that are involved in the differentiation of myeloid lineages of which several are frequently mutated in AML were hypermethylated and repressed, including CEBPA, CEBPD, IRF8, GATA2, KLF4, MITF or MAFB. Notably, HMGA2, a critical regulator of myeloid progenitor expansion, exhibited the largest degree of CIMP promoter hypermethylation compared to the other AMLs, accompanied by a reduction in gene expression. Moreover, multiple members of the HOXB family and KLF1 (erythroid differentiation) were methylated and repressed as well. In addition, these patients frequently showed hypermethylation of many chromatin factors (e.g. LMNA, CHD7 or TET2). Hypermethylation of the TET2 promoter could result in a loss of maintenance DNA demethylation and therefore successive hypermethylation at CpG islands. We carried out regulome-capture-bisulfite sequencing on CIMP-AMLs compared to other AML samples and normal blood cell controls and confirmed methylation of the same transcription and chromatin factor promoters. We conclude that these leukemias represent very primitive HSCPs which are blocked in differentiation into multiple hematopoietic lineages, due to the absence of regulators of these lineages. Although the underlying cause for the extreme hypermethylation signature is still subject to ongoing studies, the consequence of promoter hypermethylation is silencing of key lineage regulators causing the differentiation arrest in these cells. We argue that these patients may particularly benefit from therapies that revert DNA methylation. Disclosures Ehninger: Cellex Gesellschaft fuer Zellgewinnung mbH: Employment, Equity Ownership; GEMoaB Monoclonals GmbH: Employment, Equity Ownership; Bayer: Research Funding. Thiede:AgenDix: Other: Ownership; Novartis: Honoraria, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 812-812
Author(s):  
Mudit Chaand ◽  
Chris Fiore ◽  
Brian T Johnston ◽  
Diane H Moon ◽  
John P Carulli ◽  
...  

Human beta-like globin gene expression is developmentally regulated. Erythroblasts (EBs) derived from fetal tissues, such as umbilical cord blood (CB), primarily express gamma globin mRNA (HBG) and HbF, while EBs derived from adult tissues, such as bone marrow (BM), predominantly express beta globin mRNA (HBB) and adult hemoglobin. Human genetics has validated de-repression of HBG in adult EBs as a powerful therapeutic paradigm in diseases involving defective HBB, such as sickle cell anemia. To identify novel factors involved in the switch from HBG to HBB expression, and to better understand the global regulatory networks driving the fetal and adult cell states, we performed transcriptome profiling (RNA-seq) and chromatin accessibility profiling (ATAC-seq) on sorted EB cell populations from CB or BM. This approach improves upon previous studies that used unsorted cells (Huang J, Dev Cell 2016) or that did not measure chromatin accessibility (Yan H, Am J Hematol 2018). CD34+ cells from CB and BM were differentiated using a 3-phase in vitro culture system (Giarratana M, Blood 2011). Fluorescence-activated cell sorting and the cell surface markers CD36 and GYPA were used to isolate 7 discrete populations, with each sorting gate representing increasingly mature, stage-matched EBs from CB or BM (Fig 1A, B). RNA-seq analysis revealed expected expression patterns of the beta-like globins, with total levels increasing during erythroid maturation and primarily composed of HBB or HBG transcripts in BM or CB, respectively (Fig 1C). Erythroid maturation led to progressive increases in chromatin accessibility at the HBB promoter in BM populations. In CB-derived cells, erythroid maturation led to progressive increases in chromatin accessibility at the HBG promoters through the CD36+GYPA+ stage (Pops 1-5). Chromatin accessibility shifted from the HBG promoters to the HBB promoter during the final stages of differentiation (Pops 6-7), suggesting that HBG gene activation is transient in CB EBs (Fig 1D). Hierarchical clustering and principal component analysis of ATAC-seq data revealed that cell populations cluster based on differentiation stage rather than by BM or CB lineage, suggesting most molecular changes are stage-specific, not lineage-specific (Fig 2A, B). To identify transcription factors driving cell state, and potentially beta-like globin expression preference, we searched for DNA binding motifs within regions of differential chromatin accessibility and found NFI factor motifs enriched under peaks that were larger in BM relative to CB (Fig 2C). Transcription factor footprinting analysis showed that both flanking accessibility and footprint depth at NFI motifs were also increased in BM relative to CB (Fig 2D). Increased chromatin accessibility was observed at the NFIX promoter in BM relative to CB populations, and in HUDEP-2 relative to HUDEP-1 cell lines (Fig 2E). Furthermore, accessibility at the NFIX promoter correlated with elevated NFIX mRNA in BM and HUDEP-2 relative to CB and HUDEP-1, respectively. Together these data implicated NFIX in HbF repression, a finding consistent with previous genome-wide association and DNA methylation studies that suggested a possible role for NFIX in regulating beta-like globin gene expression (Fabrice D, Nat Genet 2016; Lessard S, Genome Med 2015). To directly test the hypothesis that NFIX represses HbF, short hairpin RNAs were used to knockdown (KD) NFIX in primary erythroblasts derived from human CD34+ BM cells (Fig 3A). NFIX KD led to a time-dependent induction of HBG mRNA, HbF, and F-cells comparable to KD of the known HbF repressor BCL11A (Fig 3B-D). A similar effect on HbF was observed in HUDEP-2 cells following NFIX KD (Fig 3E). Consistent with HbF induction, NFIX KD also increased chromatin accessibility and decreased DNA methylation at the HBG promoters in primary EBs (Fig 3F, G). NFIX KD led to a delay in erythroid differentiation as measured by CD36 and GYPA expression (Fig 3H). Despite this delay, by day 14 a high proportion of fully enucleated erythroblasts was observed, suggesting NFIX KD cells are capable of terminal differentiation (Fig 3H). Collectively, these data have enabled identification and validation of NFIX as a novel repressor of HbF, a finding that enhances the understanding of beta-like globin gene regulation and has potential implications in the development of therapeutics for sickle cell disease. Disclosures Chaand: Syros Pharmaceuticals: Employment, Equity Ownership. Fiore:Syros Pharmaceuticals: Employment, Equity Ownership. Johnston:Syros Pharmaceuticals: Employment, Equity Ownership. Moon:Syros Pharmaceuticals: Employment, Equity Ownership. Carulli:Syros Pharmaceuticals: Employment, Equity Ownership. Shearstone:Syros Pharmaceuticals: Employment, Equity Ownership.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1167-1167
Author(s):  
Andreas S. Buser ◽  
Laura Infanti ◽  
Andreas Holbro ◽  
Joerg Halter ◽  
Sabine Gerull ◽  
...  

Background: Platelet component (PC) transfusion is required for allogeneic hematopoietic stem cell transplantation (HCT) recipients. Contamination with infectious pathogens (bacteria, viruses, or protozoa) and T-cells is a risk factor for transfusion-transmitted infection (TTI) and transfusion associated graft-versus-host disease (TA-GVHD). Pathogen inactivation (PI) treatment of PC with amotosalen-UVA (PI-PC, INTERCEPT Blood System, Cerus Corp) in platelet additive solution (PAS) without bacterial screening, gamma irradiation, CMV serology, and with 7-day storage has been the standard of care in Switzerland since 2011 to manage risk of TTI and TA-GVHD. PI-PC have replaced conventional PC (C-PC) prepared in PAS with gamma irradiation and 5 day storage. We previously reported platelet usage in two consecutive five year periods at the University Hospital of Basel. Mean PI-PC dose was higher (3.0 vs. 2.8 x 1011, p=0.001) and mean storage duration longer (4.2 vs. 3.4 days: p=0.001) than with C-PC. PC expiration wastage was reduced with 7-day PI-PC storage vs. 5-day storage (1.5% vs. 8.7%). For HCT recipients, days of PC support; PC use per patient; and RBC use per patient were similar, despite 24.3% lower corrected count increments (CCI) with PI-PC. Now, we report the impact of these observations on treatment related mortality (TRM) and overall survival (OS) 100 days after HCT. Patients and Methods: A two-period retrospective cohort study was conducted to evaluate PI-PC impact on outcomes of consecutive first allogeneic HCT recipients from January 2006 to December 2010 (Period 1, P1), when gamma-irradiated apheresis C-PC were used, and Period 2 (P2) from January 2011 to December 2017, when apheresis and whole blood-derived PI-PC were used. The review utilized 100-day OS and 100-day TRM to determine the impact of PI-PC on HCT outcomes. Descriptive statistics were used for continuous variables and log-rank analysis for survival outcomes. Univariate analysis was performed using Pearson χ2 statistics. Multivariate Cox regression modelling analyses included: PC period (P1, P2), donor match (HLA identical/twin, matched related, matched unrelated), disease state (early, intermediate, late), and conditioning regimen (reduced intensity, myeloablative) with TRM as the outcome. This was an IRB approved single-center analysis. Results: In P1 and P2, 256 and 557 consecutive first-time allogeneic HCT recipients were included, respectively. By univariate analysis, the distribution of European Group for Bone Marrow Transplantation (EBMT) risk scores (grouped 0-2, 3-4, 5-7) and mean patient age were higher during P2 (p = 0.001 and p <0.001, respectively). Primary disease status (p = 0.039); stem cell source (p <0.001); GVHD prophylaxis with ATG (p <0.001); total body irradiation (p <0.001); and conditioning regimen (p <0.001) were different between P1 and P2. Donor match (p=0.084) and disease status (p = 0.628) were similar in P1 and P2. TRM at day 100 post HCT was significantly less (31/557, 5.5%) for PI-PC recipients in P2 vs. C-PC recipients in P1 (37/256, 14.5%, p<0.001). Overall proportion of survivors at day 100 post HCT was significantly greater for PI-PC recipients (507/557, 91.0 %) compared to C-PC recipients (209/256, 81.6%, p <0.001). By multivariate Cox regression analysis, P2 with PI-PC component support was associated with improved TRM (p = 0.001; adjusted hazard ratio 0.433; 95% confidence interval: 0.262, 0.716). Donor match (p = 0.019), disease state (p = 0.022), and myeloablative conditioning (p = 0.034) were associated with significantly poorer TRM (Table). Stem cell source was not significant (p=0.157) in the model. Hemorrhage was reported as cause of death in 1/50 (2.0%) patients during P2 with PI-PC and 4/47 (8.5%) patients during P1 with C-PCs. Conclusions: Universal implementation of PI-PC in routine with extended storage to 7 days in P2 was associated with reduced TRM and better overall survival 100 days post HCT, despite transplantation of older patients with higher EBMT risk scores. Multivariate analysis revealed an adjusted hazard ratio of 0.433 (95% C.I. 0.262, 0.716) for TRM by 100 days, suggesting better outcomes in P2. This retrospective analysis at a single site indicated that PI-PC treated with amotosalen /UVA stored up to 7 days did not have a negative impact on TRM and OS in HCT recipients, and was an integral part of improving clinical outcomes at our institution. . Table. Disclosures Heim: Novartis: Research Funding. Irsch:Cerus Corporation: Employment, Equity Ownership. Lin:Cerus Corporation: Employment, Equity Ownership. Benjamin:Cerus Corporation: Employment, Equity Ownership. Corash:Cerus Corporation: Employment, Equity Ownership.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2213-2213
Author(s):  
Richard A. Larson ◽  
Yen Lin Chia ◽  
Camille Granvil ◽  
François Guilhot ◽  
Brian J. Druker ◽  
...  

Abstract Abstract 2213 Poster Board II-190 Background: Correlations between IM trough plasma levels (Cmin) and clinical response have been previously reported [Picard et al. Blood 2007; Larson et al. (IRIS) Blood 2008; Guilhot et al. (TOPS) ASH 2008]. This analysis correlates IM Cmin on Day 29 of initial treatment with complete cytogenetic response (CCyR) and major molecular responses (MMR) at 12 months and with cumulative Grade 3&4 toxicity over 12 months based on data pooled from 2 studies, IRIS (400 mg qd) and TOPS (400 mg bid (800 mg/daily) vs 400 mg qd), in newly diagnosed, previously untreated, Ph+ CML-CP. Methods: Steady-state Cmin was defined as predose blood level collected within ±3 hours of the scheduled dosing time on Day 29 without any dose interruptions within 5 days prior to PK sampling. The correlation between IM Cmin and CCyR and MMR at 12 months was studied by two approaches: 1) analysis of outcomes by quartile groups based on patients' IM Cmin levels; 2) logistic regression analysis with Cmin as a continuous variable plus Sokal risk scores and cumulative days with any dose interruptions during the initial 12 months. Safety parameters included Grade 3&4 AEs, as well as all frequently-occurring (>10%) AEs of any grade that occurred during the 12 months. Patients with missing covariates were excluded. Results: Steady-state IM Cmin trough levels were available in 526 patients: 319 in IRIS and 207 from TOPS. At the time of assessment most patients received either 400 mg or 800 mg; 8 patients received reduced doses (6 at 300 mg; 2 at 600 mg). The median IM Cmin [25-75% quartiles] for 400 mg in the pooled dataset was 943 ng/mL [688-1280 ng/mL], and that for 800 mg was 2910 ng/mL [2333-3900 ng/mL]. IM Cmin showed large inter-patient variability for both 400 mg and 800 mg dose groups (52.7% and 39.9%, respectively). Both CCyR and MMR rates at 12 months were significantly correlated with IM Cmin on Day 29. Besides Cmin on Day 29, Sokal risk scores and cumulative dose interruptions (due either to treatment-related toxicities or non-adherence) were significant covariates for 12 month CCyR and MMR. Patients with high Sokal scores (H) had lower CCyR and MMR rates than those with low Sokal scores (L), 64% (H), 69% (intermediate (I)), and 83% (L), respectively, for CCyR, and 37%, 48%, and 59%, respectively, for MMR. Response rates at 12 months were significantly lower for patients with cumulative dose interruptions > 28 days (in the first 12 months): 45% vs 76% for CCyR, and 27% vs 48% for MMR. Modeling predicts that at a Cmin level of 1000 ng/mL and assuming no or minimal dose interruptions, the CCyR at 12 months would be 85%, 78%, and 68% for L, I, and H Sokal risk patients, respectively, and for MMR 55%, 45% and 36%, respectively. If the Cmin were 2000 ng/mL, the CCyR at 12 months would be 93%, 89%, and 83% for L, I, and H Sokal risk patients, respectively, and for MMR 65%, 55% and 44%, respectively. The predicted CCyR and MMR would be lower if there were dose interruptions. Patients who had Grade 3&4 AEs over first 12 months period (n=136) had a higher IM Cmin on Day 29 (median [25-75% quartiles], 1985 [982-2943] ng/mL vs 1010 [728-1468] ng/mL, P<0.001), than those without (n=390) as well as longer cumulative dose interruptions (20 [8-41] days vs 0 [0-2] days, P<0.001), lower CCyR rate (66%; 77/117 vs 75%; 277/369, P=0.05), and lower MMR rate (37%; 49/131 vs 48%; 155/323, P=0.006). Most Grade 3&4 AEs were treatment-related hematologic AEs with median times to onset between 50-63 days. Regression analysis showed the correlation between hematologic Grade 3&4 AEs and IM Cmin level for the population (Figure). Among all-grade non-hematologic AEs, rash and vomiting were associated with higher IM Cmin levels. Conclusion: IRIS+TOPS pooled data confirmed earlier findings that higher steady-state IM levels correlate with better CCyR and MMR responses but also with more Grade 3&4 treatment-related toxicities. Dose interruptions compromise CCyR and MMR rates at 12 months. IM Cmin levels provide additional information together with clinical response and tolerability to inform dose changes for individual patients. Disclosures: Larson: Novartis: Consultancy, Honoraria, Research Funding. Chia:Novartis: Employment. Granvil:Novartis: Employment. Guilhot:Novartis: Consultancy, Honoraria, Research Funding; BMS: Consultancy, Honoraria. Druker:OHSU patent #843 - Mutate ABL Kinase Domains: Patents & Royalties; MolecularMD: Equity Ownership; Roche: Consultancy; Cylene Pharmaceuticals: Consultancy; Calistoga Pharmaceuticals: Consultancy; Avalon Pharmaceuticals: Consultancy; Ambit Biosciences: Consultancy; Millipore via Dana-Farber Cancer Institute: Patents & Royalties; Novartis, ARIAD, Bristol-Myers Squibb: Research Funding. O'Brien:Novartis: Consultancy, Honoraria, Research Funding; BMS: Consultancy, Honoraria, Research Funding; Wyeth: Research Funding. Baccarani:Novartis Pharma: Consultancy, Honoraria, Research Funding, Speakers Bureau; Bristol-Mayer Squibb: Consultancy, Honoraria, Research Funding, Speakers Bureau. Hughes:Bristol-Myers Squibb: Advisor, Honoraria, Research Funding; Novartis: Advisor, Honoraria, Research Funding. Nedelman:Novartis: Employment, Equity Ownership. Wang:Novartis: Employment, Equity Ownership.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2253-2253 ◽  
Author(s):  
Jeffrey R Shearstone ◽  
John H van Duzer ◽  
Simon S Jones ◽  
Matthew Jarpe

Abstract Induction of HbF is an established therapeutic strategy for the treatment of sickle cell disease (SCD), and could also be effective in treating beta-thalassemia (bT). Fetal beta-like globin gene (HbG) expression is silenced in adults partly through the nucleosome remodeling and histone deacetylase (NuRD) complex, which contains HDAC1/2 (Sankaran VG, Science, 2008). Genetic ablation of HDAC1 or HDAC2, but not HDAC3, results in the induction of HbG expression (Bradner JE, Proc Natl Acad Sci, 2010). Furthermore, we have previously shown that selective chemical inhibitors of HDAC1 and 2 elicit a dose and time dependent induction of HbG mRNA and HbF protein in cultured human CD34+ bone marrow cells undergoing erythroid differentiation (Shearstone JS, ASH Annual Meeting Abstracts, 2012). However, the mechanism through which HDAC1/2 inhibition leads to activation of HbG remains largely unknown. In this work, we have utilized our proof of concept molecule, ACY-957, to investigate changes in gene expression and chromatin organization that result from inhibition of HDAC1/2. Gene expression profiling was performed on cells treated with ACY-957 (n=3) or vehicle (n=3) using Affymetrix PrimeView GeneChips. Treatment of early erythroblasts (CD71+, GlyA-) resulted in the up and down regulation of 1294 and 681 transcript probe sets, respectively. In comparison, treatment of late erythroblasts (CD71+, GlyA+) resulted in a total of 255 transcript probe set changes. This finding is consistent with follow-up experiments demonstrating that ACY-957 is unable to induce HbG in cells positive for both CD71 and GlyA. Taken together, these results suggest that erythroblasts become less responsive to HDAC inhibition as they mature. Gene set enrichment analysis using public domain data revealed that genes up- or down-regulated by HDAC1/2 shRNA knockdown are significantly overrepresented in the list of genes induced or repressed by ACY-957, respectively; suggesting pharmacologic inhibition of HDAC1/2 recapitulates genetic ablation. We also identified significant enrichment in other gene sets involving targets linked to HbG regulation, including lysine-specific demethylase 1 (LSD1) (Shi L, Nature Medicine, 2012). GeneChip and quantitative real-time PCR time course experiments show ACY-957 treatment leads to a decrease in Bcl11A (2-fold) and Sox6 (10-fold) mRNA, known repressors of fetal globin synthesis, and an increase in Klf2 (2-fold) and Gata2 (8-fold) mRNA, proposed fetal globin activators. This result is consistent with work by others that show Gata2 is suppressed, in part, by the NuRD complex (Hong W, EMBO Journal, 2005) and that Gata2 binding at the HbG promoter leads to increased levels of HbG expression (Zhu X, PLoS One, 2012). Interestingly, Gata2 induction preceded Sox6 suppression in ACY-957 treated cells and the Sox6 promoter contains 8 canonical WGATAR binding sites and one Gata2-specific binding motif, raising the possibility suppression of Sox6 by ACY-957 is mediated by Gata2 induction. To investigate these possibilities, we have performed chromatin immunoprecipitation coupled with next generation sequencing (ChIP-seq) for HDAC1, HDAC2, Gata2, and the HDAC2-specific histone modification H3K56 in ACY-957 and vehicle treated cells. These experiments will be discussed. ChIP-seq data, both by itself and in combination with gene expression data, will provide further insight into the mechanism through which HDAC1/2 regulates HbF synthesis. Disclosures: Shearstone: Acetylon Pharmaceuticals, Inc.: Employment, Equity Ownership. van Duzer:Acetylon Pharmaceuticals, Inc.: Employment, Equity Ownership. Jones:Acetylon Pharmaceuticals, Inc: Employment, Equity Ownership. Jarpe:Acetylon Pharmaceuticals, Inc.: Employment, Equity Ownership.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3807-3807
Author(s):  
Corey S Cutler ◽  
Daniel Shoemaker ◽  
Peter Westervelt ◽  
Daniel R. Couriel ◽  
Sumithra Vasu ◽  
...  

Abstract Umbilical cord blood (UCB) offers many potential advantages as a source of hematopoietic stem cells (HSCs) for allogeneic transplantation, including ease of collection, rapid availability, flexibility of HLA-matching, lower rates of GvHD and potentially lower relapse rates. However, the low HSC content of UCB compared to other graft sources results in a prolonged time to engraftment, and higher rates of graft failure and early mortality. Pulse ex vivo exposure of HSCs to 16,16-dimethyl PGE2 (FT1050) has been demonstrated to enhance HSC engraftment potential, which could benefit clinical UCB transplant. FT1050 modulation promotes multiple mechanisms, including increased proliferation, reduced apoptosis, and improved migration and homing [North 2007&2009; Hoggatt 2009]. Improved HSC homing is mediated by induction of CXCR4 gene expression leading to increased cell surface CXCR4. Further optimization of the UCB modulation process demonstrated that incubation with 10µM FT1050 for 2 hrs at 37C resulted in a maximal biological response of the FT1050-UCB (ProHema®). A Phase 1 trial was performed to evaluate the safety of FT1050-UCB paired with an unmanipulated UCB unit in reduced-intensity double UCBT (dUCBT) [Cutler 2013]. We observed durable, multi-lineage engraftment of FT1050-UCB with acceptable safety. Earlier neutrophil engraftment was observed relative to historical controls (median 17.5 vs. 21 days (historical control), p=0.045), coupled with preferential engraftment of the FT1050-UCB unit in 10 of 12 subjects. A Phase 2 multi-center clinical trial of FT1050-UCB in adult patients undergoing dUCBT for hematologic malignancies was then initiated. Subjects are randomized 2:1 to FT1050-UCB-containing vs. standard dUCBT after high-dose conditioning. The primary endpoint is a categorical analysis of neutrophil engraftment using a pre-specified control median. Data on the initial 11 subjects, of which 8 were randomized to receive FT1050-UCB, continue to demonstrate acceptable safety with adverse events attributed to FT1050-UCB limited primarily to common infusion-related side effects. Of the 8 FT1050-UCB subjects, 1 died prior to neutrophil engraftment, with the remaining 7 subjects engrafting at a median of 28 days vs. 31 days for the 3 control subjects. With median overall follow-up of 16.1 months, 4 of 8 subjects on the FT1050-UCB arm are alive with a median survival not reached (> 11.0 months). 1 of 3 control subjects is alive with median survival of 6.0 months. During the clinical translation process, the media used during FT1050 modulation of UCB was identified as a key variable. Standard UCB washing media, consisting of a nutrient-free saline solution of low molecular weight dextran and human serum albumin (LMD/HSA), is used clinically to stabilize fragile cells post-thaw by reducing lysis. This media was used in the Phase 1 trial and to initiate Phase 2. Early during the Phase 2 trial, we identified a novel cell-stabilizing nutrient-rich formulation (NRM), containing glucose, amino acids and other HSC-supporting nutrients that promoted full FT1050 modulation of UCB and increased cell viability. The expression of key FT1050-pathway genes was significantly higher with NRM compared to intermediate levels observed with LMD/HSA. Modulation of human CD34+ (hCD34+) cells with FT1050 in NRM led to an 8-fold increase over LMD/HSA in induced CXCR4 gene expression (20-fold total), which translated to significantly increased surface CXCR4 protein. In vivo homing models demonstrated that UCB CD34+ cells modulated with FT1050 in NRM resulted in a 2.2-fold homing increase relative to vehicle (p < 0.001) compared to a 1.6-fold increase with LMD/HSA (p = 0.002), with a significant difference between the two media conditions (p = 0.04). A xenotransplantation study in NSG mice with hCD34+ cells modulated with FT1050 in either NRM or LMD/HSA demonstrated a 2-fold increase in circulating hCD45+ cells 12-weeks post-transplant with NRM (p = 0.007; unpaired t-test). These findings supported the incorporation of NRM into the FT1050-UCB manufacturing process in order to further improve its clinical engraftment potential. Enrollment of a 60-patient Phase 2 trial has been initiated that incorporates this manufacturing change. Disclosures Shoemaker: Fate Therapeutics: Employment, Equity Ownership. Rezner:Fate Therapeutics: Employment. Guerrettaz:Fate Therapeutics: Employment. Robbins:Fate Therapeutics: Employment. Medcalf:Fate Therapeutics: Employment. Wolchko:Fate Therapeutics: Employment, Equity Ownership. Ferraro:Fate Therapeutics: Employment. Multani:Fate Therapeutics: Employment.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2841-2841 ◽  
Author(s):  
Yosaku Watatani ◽  
Yasunobu Nagata ◽  
Vera Grossmann ◽  
Yusuke Okuno ◽  
Tetsuichi Yoshizato ◽  
...  

Abstract Myelodysplastic syndromes (MDS) and related disorders are a heterogeneous group of chronic myeloid neoplasms with a high propensity to acute myeloid leukemia. A cardinal feature of MDS, as revealed by the recent genetic studies, is a high frequency of mutations and copy number variations (CNVs) affecting epigenetic regulators, such as TET2, IDH1/2, DNMT3A, ASXL1, EZH2, and other genes, underscoring a major role of deregulated epigenetic regulation in MDS pathogenesis. Meanwhile, these mutations/deletions have different impacts on the phenotype and the clinical outcome of MDS, suggesting that it should be important to understand the underlying mechanism for abnormal epigenetic regulation for better classification and management of MDS. SETD2 and ASH1L are structurally related proteins that belong to the histone methyltransferase family of proteins commonly engaged in methylation of histone H3K36. Both genes have been reported to undergo frequent somatic mutations and copy number alterations, and also show abnormal gene expression in a variety of non-hematological cancers. Moreover, germline mutation of SETD2 has been implicated in overgrowth syndromes susceptible to various cancers. However, the role of alterations in these genes has not been examined in hematological malignancies including myelodysplasia. In this study, we interrogated somatic mutations and copy number variations, among a total of 1116 cases with MDS and myelodysplastic/myeloproliferative neoplasms (MDS/MPN), who had been analyzed by target deep sequencing (n=944), and single nucleotide polymorphism-array karyotyping (SNP-A) (n=222). Gene expression was analyzed in MDS cases and healthy controls, using publically available gene expression datasets. SETD2 mutations were found in 6 cases, including 2 with nonsense and 4 with missense mutations, and an additional 10 cases had gene deletions spanning 1.8-176 Mb regions commonly affecting the SETD2 locus in chromosome 3p21.31, where SETD2 represented the most frequently deleted gene within the commonly deleted region. SETD2 deletion significantly correlated with reduced SETD2 expression. Moreover, MDS cases showed a significantly higher SETD2 expression than healthy controls. In total, 16 cases had either mutations or deletions of the SETD2 gene, of which 70% (7 out of 10 cases with detailed diagnostic information) were RAEB-1/2 cases. SETD2 -mutated/deleted cases had frequent mutations in TP53 (n=4), SRSF2 (n=3), and ASXL1 (n=3) and showed a significantly poor prognosis compared to those without mutations/deletions (HR=3.82, 95%CI; 1.42-10.32, P=0.004). ASH1L, on the other hand, was mutated and amplified in 7 and 13 cases, respectively, of which a single case carried both mutation and amplification with the mutated allele being selectively amplified. All the mutations were missense variants, of which 3 were clustered between S1201 and S1209. MDS cases showed significantly higher expression of ASH1L compared to healthy controls, suggesting the role of ASH1L overexpression in MDS development. Frequent mutations in TET2 (n=8) and SF3B1 (n=6) were noted among the 19 cases with ASH1L lesions. RAEB-1/2 cases were less frequent (n=11) compared to SETD2-mutated/deleted cases. ASH1L mutations did not significantly affect overall survival compared to ASH1L-intact cases. Gene Set Expression Analysis (Broad Institute) on suppressed SETD2 and accelerated ASH1L demonstrated 2 distinct expression signatures most likely due to the differentially methylated H3K36. We described recurrent mutations and CNVs affecting two histone methyltransferase genes, which are thought to represent novel driver genes in MDS involved in epigenetic regulations. Given that SETD2 overexpression and reduced ASH1L expression are found in as many as 89% of MDS cases, deregulation of both genes might play a more role than expected from the incidence of mutations and CNVs alone. Although commonly involved in histone H3K36 methylation, both methyltransferases have distinct impacts on the pathogenesis and clinical outcome of MDS in terms of the mode of genetic alterations and their functional consequences: SETD2 was frequently affected by truncating mutations and gene deletions, whereas ASH1L underwent gene amplification without no truncating mutations, suggesting different gene targets for both methyltransferases, which should be further clarified through functional studies. Disclosures Alpermann: MLL Munich Leukemia Laboratory: Employment. Nadarajah:MLL Munich Leukemia Laboratory: Employment. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Shih:Novartis: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2758-2758 ◽  
Author(s):  
Anita G Seto ◽  
Xuan T Beatty ◽  
Linda A Pestano ◽  
Brent A Dickinson ◽  
Marshelle S Warren ◽  
...  

Abstract Treatment-resistant hematological malignancies remain an area of high unmet need and novel therapeutic approaches will be required. microRNAs are small (~ 22 nt) non-coding RNAs that act as negative regulators of gene expression. These small RNAs impact expression of a substantial fraction of the genome, and have powerful effects on cellular phenotypes and physiological processes. miR-155-5p is a well-described oncomiR associated with poor prognosis in multiple malignancies, particularly lymphoma and leukemia. Cutaneous T-cell lymphoma (CTCL) is a rare hematological malignancy with limited treatment options and a strong mechanistic link to increased miR-155-5p. Because of the accessibility of cutaneous lesions, CTCL provides a unique opportunity to determine if inhibition of miR-155-5p has therapeutic potential in lymphomas associated with elevated miR-155-5p. We optimized a LNA-modified oligonucleotide inhibitor of miR-155-5p, MRG-106, based on the ability to de-repress canonical miR-155-5p targets in multiple cell types in vitro. In mycosis fungoides (MF) cell lines, MRG-106 does not require additional formulation to achieve maximum pharmacodynamic efficacy. Inhibition of miR-155-5p resulted in transcriptome changes consistent with miR-155-5p target gene modulation, reduction in cell proliferation, and activation of the programmed cell death pathway. The gene expression and phenotypic effects were inhibitor dose-dependent and sequence-specific. Based on an informatics approach for the expression profiling of MF cell lines treated with MRG-106, a set of 600 genes was identified to represent the translational pharmacodynamic biomarker signature, both direct and downstream of miR-155-5p. GLP preclinical safety studies have been completed in rats and non-human primates, demonstrating an acceptable safety profile for MRG-106. We plan to initiate a 4-week first-in-human clinical trial in CTCL (MF) patients. The trial design is two-part, with Part A testing the effect of direct intra-tumoral injection of MRG-106 into plaque and nodular skin lesions, and Part B testing the effect of systemic (subcutaneous) administration of higher doses of MRG-106. The primary objective of Part A is to profile the pharmacodynamic effect of MRG-106 on the miR-155-5p gene expression signature, establishing a PK/PD model to guide future development. The primary objective of Part B is to establish the safety, tolerability, PK and skin deposition of MRG-106 after systemic delivery. Exploratory objectives include measures for clinical response, immune system effects, and biomarker validation. Disclosures Seto: miRagen Therapeutics: Employment, Equity Ownership. Beatty:miRagen Therapeutics: Employment, Equity Ownership. Pestano:miRagen Therapeutics: Employment, Equity Ownership. Dickinson:miRagen Therapeutics: Employment, Equity Ownership. Warren:miRagen Therapeutics: Consultancy. Rodman:miRagen Therapeutics: Employment, Equity Ownership. Jackson:miRagen Therapeutics: Employment, Equity Ownership.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3505-3505
Author(s):  
Devin T Bridgen ◽  
Tia DiTommaso ◽  
Joshua Buggé ◽  
Jonathan B Gilbert ◽  
Howard Bernstein ◽  
...  

Abstract While the ex vivo manipulation of primary cells has signaled a new era in the application of cell-based therapies, common methods to manipulate primary cells have limitations. To overcome the limitations associated with conventional cell delivery and engineering systems, we have developed an approach to delivery where cells are mechanically deformed as they pass through a constriction. This cellular deformation results in the diffusion of material from the surrounding buffer directly into the cytosol. This system has demonstrated efficacy in patient-derived cells, such as stem cells and immune cells, with a variety of target molecules that are difficult to address with alternative methods. Moreover, by eliminating the need for electrical fields or exogenous materials such as viral vectors and plasmids, it minimizes the potential for cell toxicity and off-target effects. Here, we present evidence detailing our ability to deliver functional material to primary human CD34+ cells via cell deformation with little detectable perturbation in baseline gene expression, cell function, and viability. To determine effect of cell deformation on gene expression and to compare to other delivery systems, human CD34+ cells (n = 3 donors) were subjected to cell deformation or electroporation and gene expression changes were compared to unmanipulated control cells using microarray analysis. Differential gene expression with respect to both methods of delivery was assessed by performing t tests on the coefficient of a linear mixed-effects model that treated delivery method as a fixed effect and donor as a random effect. Electroporation produced substantially more changes in gene expression (5,285 genes with FDR q < 0.25) than cell deformation (no genes with FDR q < 0.25) as compared to untreated controls. Subsequently, we designed a series of experiments to manipulate gene expression with the CRISPR-CAS9 system using cell deformation to deliver CAS9 ribonucleoproteins (RNPs; recombinant CAS9 protein complexed with a single-guide RNA) designed to edit a model locus, the C-C chemokine receptor type 5 (CCR5). Here, we show that the delivery of the CRISPR-CAS9 system via cell deformation results in significant CCR5 mutagenesis. Furthermore, CD34+ cells subjected to cell deformation proliferate and differentiate at rates similar to unmanipulated control cells, as determined by the Colony-Forming Cell (CFC) assay. Disruption of the CCR5 locus was observed in individual BFU-E colonies by performing Sanger sequencing. These data suggest that cell deformation is a viable delivery method for genetic engineering of primary human CD34+ cells with little impact on baseline gene expression or the ability of hematopoietic progenitors to proliferate and differentiate. The ability to deliver structurally diverse materials to difficult-to-transfect primary CD34+ cells indicate that this method could potentially enable many novel clinical applications. Disclosures Bridgen: SQZ Biotechnologies: Employment, Equity Ownership. DiTommaso:SQZ Biotechnologies: Employment, Equity Ownership. Buggé:SQZ Biotechnologies: Employment, Equity Ownership. Gilbert:SQZ Biotechnologies: Employment, Equity Ownership. Bernstein:SQZ Biotechnologies: Employment, Equity Ownership. Sharei:SQZ Biotechnologies: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4712-4712
Author(s):  
Jonathan Rosen ◽  
Betsy Rezner ◽  
David Robbins ◽  
Ian Hardy ◽  
Eigen Peralta ◽  
...  

Abstract Adoptive cellular therapies using engineered chimeric antigen receptor T cells (CAR-T cells) are rapidly emerging as a highly effective treatment option for a variety of life-threatening hematological malignancies. Small molecule-mediated modulation of T cell differentiation during the in vitro CAR-T manufacturing process has great potential as a method to optimize the therapeutic potential of cellular immunotherapies. In animal models, T cells with a central or stem memory (TCM/SCM) phenotype display enhanced in vivoefficacy and persistence relative to other T cell subpopulations. We sought to identify small molecules that promote skewing towards a TCM/SCM phenotype during the CAR-T manufacturing process, with associated enhanced viability, expansion and metabolic profiles of the engineered cells. To this end, we developed a high-throughput functional screening platform with primary human T cells using a combination of high-content immunophenotyping and gene expression-based readouts to analyze cells following a high-throughput T cell culture platform that represents a scaled-down model of clinical CAR-T cell production. Multicolor flow cytometry was used to measure expansion, cell viability and the expression levels of cell surface proteins that define TCM cells (e.g., CCR7, CD62L and CD27) and markers of T cell exhaustion (e.g., PD1, LAG3, and TIM3). In parallel, a portion of each sample was evaluated using high content RNA-Seq based gene expression analysis of ~100 genes representing key biological pathways of interest. A variety of known positive and negative control compounds were incorporated into the high-throughput screens to validate the functional assays and to assess the robustness of the 384-well-based screening. The ability to simultaneously correlate small molecule-induced changes in protein and gene expression levels with impacts on cell proliferation and viability of various T cell subsets, enabled us to identify multiple classes of small molecules that favorably enhance the therapeutic properties of CAR-T cells. Consistent with results previously presented by Perkins et al. (ASH, 2015), we identified multiple PI3K inhibitors that could modify expansion of T cells while retaining a TCM/SCM phenotype. In addition, we identified small molecules, and small molecule combinations, that have not been described previously in the literature that could improve CAR-T biology. Several of the top hits from the screens have been evaluated across multiple in vitro (e.g., expansion, viability, CAR expression, serial restimulation/killing, metabolic profiling, and evaluation of exhaustion markers) and in vivo (e.g., mouse tumor models for persistence and killing) assays. Results from the initial screening hits have enabled us to further refine the optimal target profile of a pharmacologically-enhanced CAR-T cell. In addition, we are extending this screening approach to identify small molecules that enhance the trafficking and persistence of CAR-T cells for treating solid tumors. In conclusion, the approach described here identifies unique small molecule modulators that can modify CAR-T cells during in vitro expansion, such that improved profiles can be tracked and selected from screening through in vitro and in vivo functional assays. Disclosures Rosen: Fate Therapeutics: Employment, Equity Ownership. Rezner:Fate Therapeutics, Inc: Employment, Equity Ownership. Robbins:Fate Therapeutics: Employment, Equity Ownership. Hardy:Fate Therapeutics: Employment, Equity Ownership. Peralta:Fate Therapeutics: Employment, Equity Ownership. Maine:Fate Therapeutics: Employment, Equity Ownership. Sabouri:Fate Therapeutics: Employment, Equity Ownership. Reynal:Fate Therapeutics: Employment. Truong:Fate Therapeutics: Employment, Equity Ownership. Moreno:Fate Therapeutics, Inc.: Employment, Equity Ownership. Foster:Fate Therapeutics: Employment, Equity Ownership. Borchelt:Fate Therapeutics: Employment, Equity Ownership. Meza:Fate Therapeutics: Employment, Equity Ownership. Thompson:Juno Therapeutics: Employment, Equity Ownership. Fontenot:Juno Therapeutics: Employment, Equity Ownership. Larson:Juno Therapeutics: Employment, Equity Ownership. Mujacic:Juno Therapeutics: Employment, Equity Ownership. Shoemaker:Fate Therapeutics: Employment, Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document