CXCL9 Contributes To Chemotherapy-Induced Acute Intestinal Damage Through Proliferative Inhibition Of Epithelial Cells

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5563-5563
Author(s):  
Huili Lu ◽  
Hongyu Liu ◽  
Jiaqing Shen ◽  
Shunyan Weng ◽  
Lan Qian ◽  
...  

Abstract Apart from angiostasis and chemoattraction, CXCL9 can derange hematopoiesis by its influence on mesenchymal stroma cells. The receptor of CXCL9, CXCR3, is abundantly expressed intracellularly in epithelial cells, even though it is rarely present on the surface of these cells. Here, we hypothesized that CXCL9 influences the proliferative and degenerative activity of epithelial cells in vitro and in vivo. CXCL9 inhibited the proliferation of MCF10A cells in a dose-dependent manner. In vivo, rhCXCL9 caused an intestinal weight loss of 30% in normal mice (n=6, 0.59±0.05 g of rhCXCL9 treated mice versus 0.83±0.06 g controls, P = 0.0007 determined by 2-tailed student’s t-test). Intestinal epithelial cells of 5-Fluorouracil (5-FU) treated mice developed a 2.55 fold higher level of cxcl9 expression, indicating that CXCL9 may participate in a chemotherapy-induced damage of the intestinal epithelium. Neutralization of the up-regulated endogenous CXCL9 by anti-CXCL9 monoclonal antibodies accelerated epithelial regeneration determined by villi length (317.5±19.9 μm versus no-antibody control 283.7±17.1 μm, P < 0.001) and crypt depth (78.0±8 μm versus control 67.9±10.9 μm, P = 0.326). CXCL9 function was highly associated with p70 ribosomal S6 kinase (p70S6K) activation (50.0±2.2 MFI versus control 27.9±1.4 MFI, P = 0.007), which was reversed by anti-CXCR3 (31.4±5.7 MFI, n=4). CXCL9 downstreamingly stimulated TGF-β secretion of epithelial cells through the mTOR/p70S6K pathway (66.3±17.1 pg/mL versus on-treated control 39.8±12.2 pg/mL, P <0.05), which was reversed by anti-CXCR3 (46.8±21.6 pg/mL, n=8). That explains the anti-proliferative effect of CXCL9 on these cells. Our results strongly suggest that anti-CXCL9 may help to mitigate a chemotherapy-induced intestinal damage. The work was supported by the National Science Foundation China (81273576, 30801419, 30901873), and the German Academic Exchange Service (A/09/90104). Disclosures: No relevant conflicts of interest to declare.

2021 ◽  
Author(s):  
Jun Sun ◽  
Wei Wu ◽  
Xiaofeng Tang ◽  
Feifei Zhang ◽  
Cheng Ju ◽  
...  

Background: WT161, as a selective HDAC6 inhibitor, has been shown to play anti-tumor effects on several kinds of cancers. The aim of this study is to explore the roles of WT161 in osteosarcoma and its underlying mechanisms. Methods: The anti-proliferative effect of WT161 on osteosarcoma cells was examined using MTT assay and colony formation assay. Cell apoptosis was analyzed using flow cytometer. The synergistic effect was evaluated by isobologram analysis using CompuSyn software. The osteosarcoma xenograft models were established to evaluate the anti-proliferative effect of WT161 in vivo. Results: WT161 suppressed the cell growth and induced apoptosis of osteosarcoma cells in a dose- and time-dependent manner. Mechanistically, we found that WT161 treatment obviously increased the protein level of PTEN and decreased the phosphorylation level of AKT. More importantly, WT161 show synergistic inhibition with 5-FU on osteosarcoma cells in vitro and in vivo. Conclusions: These results indicate that WT161 inhibits the growth of osteosarcoma through PTEN and has a synergistic efficiency with 5-FU.


Author(s):  
Yu Takahashi ◽  
Yu Inoue ◽  
Keitaro Kuze ◽  
Shintaro Sato ◽  
Makoto Shimizu ◽  
...  

Abstract Intestinal organoids better represent in vivo intestinal properties than conventionally used established cell lines in vitro. However, they are maintained in three-dimensional culture conditions that may be accompanied by handling complexities. We characterized the properties of human organoid-derived two-dimensionally cultured intestinal epithelial cells (IECs) compared with those of their parental organoids. We found that the expression of several intestinal markers and functional genes were indistinguishable between monolayer IECs and organoids. We further confirmed that their specific ligands equally activate intestinal ligand-activated transcriptional regulators in a dose-dependent manner. The results suggest that culture conditions do not significantly influence the fundamental properties of monolayer IECs originating from organoids, at least from the perspective of gene expression regulation. This will enable their use as novel biological tools to investigate the physiological functions of the human intestine.


2016 ◽  
Vol 130 (19) ◽  
pp. 1727-1739 ◽  
Author(s):  
Akiko Tanino ◽  
Takafumi Okura ◽  
Tomoaki Nagao ◽  
Masayoshi Kukida ◽  
Zuowei Pei ◽  
...  

Interleukin (IL)-18 is a member of the IL-1 family of cytokines and was described originally as an interferon γ-inducing factor. Aldosterone plays a central role in the regulation of sodium and potassium homoeostasis by binding to the mineralocorticoid receptor and contributes to kidney and cardiovascular damage. Aldosterone has been reported to induce IL-18, resulting in cardiac fibrosis with induced IL-18-mediated osteopontin (OPN). We therefore hypothesized that aldosterone-induced renal fibrosis via OPN may be mediated by IL-18. To verify this hypothesis, we compared mice deficient in IL-18 and wild-type (WT) mice in a model of aldosterone/salt-induced hypertension. IL-18−/− and C57BL/6 WT mice were used for the uninephrectomized aldosterone/salt hypertensive model, whereas NRK-52E cells (rat kidney epithelial cells) were used in an in vitro model. In the present in vivo study, IL-18 protein expression was localized in medullary tubules in the WT mice, whereas in aldosterone-infused WT mice this expression was up-regulated markedly in the proximal tubules, especially in injured and dilated tubules. This renal damage caused by aldosterone was attenuated significantly by IL-18 knockout with down-regulation of OPN expression. In the present in vitro study, aldosterone directly induced IL-18 gene expression in renal tubular epithelial cells in a concentration- and time-dependent manner. These effects were inhibited completely by spironolactone. IL-18 may be a key mediator of aldosterone-induced renal fibrosis by inducing OPN, thereby exacerbating renal interstitial fibrosis. Inhibition of IL-18 may therefore provide a potential target for therapeutic intervention aimed at preventing the progression of renal injury.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3376-3376
Author(s):  
Romain Gioia ◽  
Cedric Leroy ◽  
Claire Drullion ◽  
Valérie Lagarde ◽  
Serge Roche ◽  
...  

Abstract Abstract 3376 Nilotinib has been developed to overcome resistance to imatinib, the first line treatment of chronic myeloid leukemia (CML). To anticipate resistance to nilotinib, we generate nilotinib resistant CML cell lines in vitro to characterize mechanisms and signaling pathways that may contribute to resistance. Among the different mechanisms of resistance identified, the overexpression of the Src-kinase Lyn was involved in resistance both in vitro, in a K562 cell line (K562-rn), and in vivo, in nilotinib-resistant CML patients. To characterize how Lyn mediates resistance, we performed a phosphoproteomic study using SILAC (Stable Isotope Labelling with Amino acid in Cell culture). Quantification and identification of phosphotyrosine proteins in the nilotinib resistant cells point out two tyrosine kinases, the spleen tyrosine kinase Syk and the UFO receptor Axl. The two tyrosine kinase Syk and Axl interact with Lyn as seen by coimmunopreciptation. Syk is phosphorylated on tyrosine 323 and 525/526 in Lyn dependent manner in nilotinib resistant cells. The inhibition of Syk tyrosine kinase by R406 or BAY31-6606 restores sensitivity to nilotinib in K562-rn cells. In parallel, the inhibition of Syk expression by ShRNA in K562-rn cells abolishes Lyn and Axl phosphorylation and then interaction between Lyn and Axl leading to a full restoration of nilotinib efficacy. In the opposite, the coexpression of Lyn and Syk in nilotinib sensitive K562 cells induced resistance to nilotinib whereas a Syk kinase dead mutant did not. These results highlight for the first time the critical role of Syk in resistance to tyrosine kinase inhibitors in CML disease emphasizing the therapeutic targeting of this tyrosine kinase. Moreover, Axl, which is already a target in solid tumor, will be also an interesting pathway to target in CML. Disclosures: No relevant conflicts of interest to declare.


2014 ◽  
Vol 997 ◽  
pp. 225-228 ◽  
Author(s):  
Yan Ling Wu ◽  
Li Wen Shen ◽  
Yan Ping Ding ◽  
Yoshimasa Tanaka ◽  
Wen Zhang

Benzamide derivatives have been shown to have antitumor activity in various tumor cell lines in vitro as well as in vivo. In this study, we examined the anti-proliferative effect of four benzamide derivativeson Hela, H7402, and SK-RC-42 tumor cell lines in vitro by means of Real-Time cell assay (RTCA), and found that four benzamide derivatives suppressed proliferation of tumor cells in a time-and dose-dependent manner. The anti-proliferative activity of benzamide derivatives demonstrated that theycould be promising lead compounds for developing therapeutic agents for malignant tumors.


Author(s):  
Debbie Clements ◽  
Suzanne Miller ◽  
Roya Babaei-Jadidi ◽  
Mike Adam ◽  
S. Steven Potter ◽  
...  

Lymphangioleiomyomatosis (LAM) is a female specific cystic lung disease in which TSC2 deficient LAM cells, LAM-Associated Fibroblasts (LAFs) and other cell types infiltrate the lungs. LAM lesions can be associated with type II alveolar epithelial cells (AT2 cells). We hypothesised that the behaviour of AT2 cells in LAM is influenced locally by LAFs. We tested this hypothesis in patient samples and in vitro. In human LAM lung, nodular AT2 cells show enhanced proliferation when compared to parenchymal AT2 cells, demonstrated by increased Ki67 expression. Further, nodular AT2 cells express proteins associated with epithelial activation in other disease states including Matrix Metalloproteinase 7, and Fibroblast Growth Factor 7 (FGF7). In vitro, LAF conditioned medium is mitogenic and positively chemotactic for epithelial cells, increases the rate of epithelial repair and protects against apoptosis. In vitro, LAM patient-derived TSC2 null cells cocultured with LAFs upregulate LAF expression of the epithelial chemokine and mitogen FGF7, which is a potential mediator of fibroblast-epithelial crosstalk, in an mTOR dependent manner. In a novel in vitro model of LAM, ex vivo cultured LAM lung-derived microtissues promote both epithelial migration and adhesion. Our findings suggest that AT2 cells in LAM display a proliferative, activated phenotype and that fibroblast accumulation following LAM cell infiltration into the parenchyma contributes to this change in AT2 cell behaviour. Fibroblast-derived FGF7 may contribute to the cross-talk between LAFs and hyperplastic epithelium in vivo, but does not appear to be the main driver of the effects of LAFs on epithelial cells in vitro.


2020 ◽  
Author(s):  
Fan Deng ◽  
Jingjuan Hu ◽  
Xiao Yang ◽  
Yifan Wang ◽  
Kexuan Liu

Abstract Background & Aims: Epithelial regeneration is essential for homeostasis and mucosal barrier repair. In infectious and immune-mediated intestinal diseases, interleukin (IL)-10 is thought to enhance these processes. We aimed to define the mechanism by which IL-10 played in mucosal healing or injury.Methods: Intestinal stem cells (ISCs) cultures and mice were treated with recombinant mice IL-10 (rmIL-10). The level of cell proliferation, differentiation, death and related signaling pathways for self-renewal of ISCs were measured in vitro and in vivo.Results: It was uncovered that rmIL-10 increased the size and death, but reduced the total number of organoids. In addition, rmIL-10 depleted Lgr5+ ISCs and reduced epithelial proliferation, but enhanced the differentiation of epithelial cells and expanded numbers of transit-amplifying (TA) cells. These changes are related to the decrease of Wnt and Notch signals in vivo and in vitro. Meanwhile, increased expression of Paneth cells and decreased expression of enteroendocrine cells and goblet cells were induced by rmIL-10.Conclusions: IL-10 reduces the survival of Lgr5+ ISCs and proliferation of epithelial cells by inhibiting Notch and Wnt signaling, but promotes enhanced the differentiation of epithelial cells and expanded numbers of TA cells. Therefore, IL-10 acts as an anti-inflammatory factor, but may damage intestinal mucosa repair and maybe a potential target for the treatment of intestinal injury.


Author(s):  
Rahwa Taddese ◽  
Rian Roelofs ◽  
Derk Draper ◽  
Xinqun Wu ◽  
Shaoguang Wu ◽  
...  

ObjectiveThe opportunistic pathogen Streptococcus gallolyticus is one of the few intestinal bacteria that has been consistently linked to colorectal cancer (CRC). This study aimed to identify novel S. gallolyticus-induced pathways in colon epithelial cells that could further explain how S. gallolyticus contributes to CRC development.Design and ResultsTranscription profiling of in vitro cultured CRC cells that were exposed to S. gallolyticus revealed the specific induction of oxidoreductase pathways. Most prominently, CYP1A and ALDH1 genes that encode phase I biotransformation enzymes were responsible for the detoxification or bio-activation of toxic compounds. A common feature is that these enzymes are induced through the Aryl hydrocarbon receptor (AhR). Using the specific inhibitor CH223191, we showed that the induction of CYP1A was dependent on the AhR both in vitro using multiple CRC cell lines as in vivo using wild-type C57bl6 mice colonized with S. gallolyticus. Furthermore, we showed that CYP1 could also be induced by other intestinal bacteria and that a yet unidentified diffusible factor from the S. galloltyicus secretome (SGS) induces CYP1A enzyme activity in an AhR-dependent manner. Importantly, priming CRC cells with SGS increased the DNA damaging effect of the polycyclic aromatic hydrocarbon 3-methylcholanthrene.ConclusionThis study shows that gut bacteria have the potential to modulate the expression of biotransformation pathways in colonic epithelial cells in an AhR-dependent manner. This offers a novel theory on the contribution of intestinal bacteria to the etiology of CRC by modifying the capacity of intestinal epithelial or (pre-)cancerous cells to (de)toxify dietary components, which could alter intestinal susceptibility to DNA damaging events.


2013 ◽  
Vol 304 (8) ◽  
pp. L511-L518 ◽  
Author(s):  
Shijing Fang ◽  
Anne L. Crews ◽  
Wei Chen ◽  
Joungjoa Park ◽  
Qi Yin ◽  
...  

Myristoylated alanine-rich C kinase substrate (MARCKS) protein has been recognized as a key regulatory molecule controlling mucin secretion by airway epithelial cells in vitro and in vivo. We recently showed that two intracellular chaperones, heat shock protein 70 (HSP70) and cysteine string protein (CSP), associate with MARCKS in the secretory mechanism. To elucidate more fully MARCKS-HSP70 interactions in this process, studies were performed in well-differentiated normal human bronchial epithelial (NHBE) cells maintained in air-liquid interface culture utilizing specific pharmacological inhibition of HSP70 with pyrimidinone MAL3-101 and siRNA approaches. The results indicate that HSP70 interaction with MARCKS is enhanced after exposure of the cells to the protein kinase C activator/mucin secretagogue, phorbol 12-myristate 13-acetate (PMA). Pretreatment of NHBEs with MAL3-101 attenuated in a concentration-dependent manner PMA-stimulated mucin secretion and interactions among HSP70, MARCKS, and CSP. In additional studies, trafficking of MARCKS in living NHBE cells was investigated after transfecting cells with fluorescently tagged DNA constructs: MARCKS-yellow fluorescent protein, and/or HSP70-cyan fluorescent protein. Cells were treated with PMA 48 h posttransfection, and trafficking of the constructs was examined by confocal microscopy. MARCKS translocated rapidly from plasma membrane to cytoplasm, whereas HSP70 was observed in the cytoplasm and appeared to associate with MARCKS after PMA exposure. Pretreatment of cells with either MAL3-101 or HSP70 siRNA inhibited translocation of MARCKS. These results provide evidence of a role for HSP70 in mediating mucin secretion via interactions with MARCKS and that these interactions are critical for the cytoplasmic translocation of MARCKS upon its phosphorylation.


2020 ◽  
Vol 21 (24) ◽  
pp. 9567
Author(s):  
Bo-Ram Jin ◽  
Se-Yun Cheon ◽  
Hyo-Jung Kim ◽  
Myoung-Seok Kim ◽  
Kwang-Ho Lee ◽  
...  

Cornus officinalis, widely used in traditional Chinese medicine, exhibits pharmacological effects against erectile dysfunction and pollakisuria, which are pathological symptoms of benign prostatic hyperplasia (BPH). Although traditional usage and a study on BPH have been reported, to our knowledge, no study has investigated the exact molecular mechanism(s) underlying the anti-proliferative effects of standardized C. officinalis on prostatic cells. We standardized C. officinalis 30% ethanol extract (COFE) and demonstrated the therapeutic effects of COFE on human BPH epithelial cells and testosterone-induced BPH in rats. In vitro studies using BPH-1 cells demonstrated an upregulation of BPH-related and E2F Transcription Factor 1(E2F1)-dependent cell cycle markers, whereas treatment with COFE clearly inhibited the proliferation of BPH epithelial cells and reduced the overexpression of G1 and S checkpoint genes. Additionally, COFE administration alleviated the androgen-dependent prostatic enlargement in a testosterone-induced BPH animal model. COFE exerted these anti-BPH effects by the inhibition of anti-apoptotic markers, suppression of PCNA expression, and regulation of E2F1/pRB-dependent cell cycle markers in rats with BPH. These results suggest that COFE exerts anti-proliferative effect by regulating PCNA/E2F1-dependent cell cycle signaling pathway both in vivo and in vitro. These findings reveal the therapeutic potential of COFE, which could be used as a substitute for BPH treatment.


Sign in / Sign up

Export Citation Format

Share Document