Mechanisms of Acquired Resistance to Venetoclax in Preclinical AML Models

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 328-328 ◽  
Author(s):  
Qi Zhang ◽  
Rongqing Pan ◽  
Lina Han ◽  
Ce Shi ◽  
Stephen E. Kurtz ◽  
...  

Abstract BH3-mimetic ABT-199 (venetoclax, VEN) is a selective small-molecule antagonist of the anti-apoptotic BCL-2 protein. It binds to BCL-2 specifically, causing the release of pro-apoptotic BAX and BH3-only proteins and induction of cell death. Our studies indicated that AML is a BCL-2 dependent disease that, in pre-clinical studies, responds robustly to VEN by induction of apoptotic cell death (Pan et al., Cancer Discovery 2014). As a single agent, VEN demonstrated clinical activity in relapsed/refractory AML, yet patients who initially responded ultimately developed resistance and progressed. In this study we investigated mechanisms of acquired resistance to VEN in preclinical AML models. First, we generated 5 VEN-resistant cell lines (OCI-AML2, Kasumi, KG-1, MV4;11 and Molm13; with VEN cell-killing IC50s of 0.021µM, 0.046µM, 0.073µM, 0.020µM and 0.050µM, respectively) by exposing the cells to gradually increasing VEN concentrations. The IC50s of resistant cells are 15.2µM, 5.7µM, 31.6µM, 11.4µM and 15.4µM (124-723-fold greater than their parental counterparts). Protein analysis of resistant cells using immunoblotting demonstrated increased expression of MCL-1, a known resistance factor to VEN, in 4 resistant cell lines (OCI-AML2, KG-1, Mv4;11 and Molm13); and BCL-XL increase in MV4;11 and Molm13 resistant cells. To characterize the functional role of MCL-1 and BCL-XL in resistance to VEN, we co-treated parental and resistant cells with novel MCL-1 and BCL-XL- selective inhibitors (A-1210477 and A-1155463). The combination of VEN with A-1210477 or A-1155463 showed synergistic growth inhibition in all 5 parental cell lines (combination indices (CI) for A-1210477 were 0.15-0.62; CI for A-1155463 were 0.33-0.51, except >3 for KG-1). Notably, 4 out of 5 resistant cell lines (OCI-AML2, Kasumi, MV4;11, Molm13) became more sensitive to MCL-1 selective inhibitor A-1155463 but not to BCL-XL inhibitor A-1210477. However, no further effects were seen in resistant cells when combined with VEN. We next compared sensitivity of three paired parental and resistant cell lines (OCI-AML2, MV4;11 and Molm13) to a library of 130 specific small-molecule inhibitors (Tyner, et.al.. Cancer Res. 2013). Cells were co-treated with VEN and each specific inhibitor, and drug target scores were calculated based on the IC50 of measured effectiveness of panel drugs against the cells. The screening revealed modulation of sensitivity to mTOR, MEK, and FLT3 pathways in resistant cells (Fig.1C). To confirm these findings, we next co-treated AML cells with VEN and specific inhibitors of the mTOR pathway (rapamycin and AZD2014) or MEK pathway (CI1040) in all 5 paired parental and resistant cell lines; or with FLT3 inhibitors (quizartinib and sorafenib) in parental and resistant MV4;11 and Molm13, which harbor FLT3-ITD. The combination of VEN and AZD2014 achieved synergistic effects in all 5 parental cell lines (CI AZD2014: 0.08-0.94), and VEN/rapamycin were synergistic in 3 parental cell lines (CI rapamycin: 0.00-0.55, except 1.76 for KG-1 and 1.59 for Molm13). Combination of VEN with CI1040 achieved synergy in OCI-AML2, Kasumi, MV4;11 and Molm13 parental cell lines (CI: 0.14-0.61). Finally, VEN/FLT3 inhibitors achieved synergistic effects in MV4;11 and Molm13 parental cell lines (CI quizartinib: 0.66-0.69; CI sorafenib: 0.64-0.71). The resistant cell lines exhibited sensitivity to these inhibitors as single agents, and no synergistic effects were seen when combined with VEN. We have further induced in vivo resistance in two primary AML xenografts by treating NSG mice engrafted with 2nd passage AML cells with 100 mg/kg Q.D. VEN for 4 weeks followed by harvest of leukemic cells that repopulated the mouse after treatment discontinuation. While the proteomics, gene expression (RNAseq) and drug screening assays are in progress, preliminary immunoblotting studies demonstrated decreased expression of BCL-XL and BCL-2 (Fig.1B). In summary, we identified multiple mechanisms of acquired resistance to VEN, which ultimately modulate the balance between pro- and anti-apoptotic BCL-2 family members. Our studies indicate that upfront combination of VEN with selective inhibitors of MCL-1, or with inhibitors of specific signaling pathways, can synergistically induce apoptosis in AML cells and conceivably prevent emergence of VEN resistance. Disclosures Leverson: AbbVie: Employment, Equity Ownership. Tyner:Aptose Biosciences: Research Funding; Constellation Pharmaceuticals: Research Funding; Janssen Pharmaceuticals: Research Funding; Array Biopharma: Research Funding; Incyte: Research Funding. Konopleva:Novartis: Research Funding; AbbVie: Research Funding; Stemline: Research Funding; Calithera: Research Funding; Threshold: Research Funding.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 101-101 ◽  
Author(s):  
Qi Zhang ◽  
Lina Han ◽  
Ce Shi ◽  
Rongqing Pan ◽  
Man Chun John MA ◽  
...  

Abstract ABT-199 (venetoclax), a selective small-molecule antagonist of the anti-apoptotic protein BCL-2, enables the activation of pro-apoptotic proteins and the induction of cancer cell death. Our previous studies found that AML is a BCL-2 dependent disease and responds robustly to venetoclax by induction of apoptotic cell death (Pan et al., Cancer Discovery 2014). Despite initial responses to single agent venetoclax in a Phase II trial of relapsed AML, patients ultimately developed resistance and progressed (Konopleva et al., Cancer Discovery 2016). In this study we investigated mechanisms of acquired resistance to venetoclax in preclinical AML models. First, we generated 5 AML cell lines resistant to ³1µM venetoclax. No BAX (exon5 and 6) or BCL2 (exon2) mutations were found in resistant cells. Immunoblotting analysis demonstrated increased expression of anti-apoptotic proteins MCL-1, BCL-2 A1, and BCL-XL, and a decrease of pro-apoptotic PUMA protein in selected resistant cell lines. To probe the functional interactions between the pro- and anti-apoptotic proteins, we next performed co-immunoprecipitation (co-IP) studies. The anti-BIM and anti-MCL-1 co-IPs revealed reduced levels of BIM:BCL-2 complexes and increased BIM:MCL-1 complexes in resistant cells compared to their parental counterparts (Fig 1B). The BH3 profiling technique examines mitochondrial sensitivity to different BH3 mimetic peptides, and has proven to be a useful tool to determine cell dependence on anti-apoptotic BCL-2 family proteins. BH3 profiling demonstrated that resistant cells had increased responses to NOXA, MS1 and HRK peptides, indicating increased dependence on MCL-1 and/or BCL-XL (Fig 1C). To characterize the functional role of MCL-1 in resistance to venetoclax, we co-treated parental and resistant cells with selective BCL-XL or MCL-1 inhibitors A-1155463 (Leverson et al. Science Transl Med 2015) and A-1210477 (Leverson et al., Cell Death Dis 2015). The combination of venetoclax with either A-1155463 or A-1210477 showed synergistic growth inhibition in all 5 parental cell lines. Notably, 4 of the 5 resistant cell lines (OCI-AML2, Kasumi, MV4-11, MOLM13) became more sensitive to an MCL-1 inhibitor but not to a BCL-XL inhibitor (Fig 1E). However, no further sensitization was seen in combination with venetoclax in resistant cells. To characterize additional mechanisms of resistance to venetoclax in AML cells, we conducted RNA sequencing of single cell clones (2 clones/cell line) isolated from paired isogenic cells (OCI-AML2, MV4-11, MOLM13). Analysis of RNA expression patterns by gene set enrichment analysis (GSEA) revealed elevated expression of genes in the RAS/MAPK pathway (Fig 1F), consistent with increased p-ERK and p-p90-RSK protein levels (Fig 1G). Inhibition of MAPK with MEK inhibitor GDC-0973 reduced MCL-1 expression in parental but not in resistant cells, indicating that MAPK activation partially contributed to high MCL-1 levels (Fig 1G). GSEA of RNAseq data further uncovered altered expression of genes involved in mitochondrial oxidative phosphorylation (OxPhos) in 3 resistant cell lines with high MCL-1 expression (OCI-AML2, MV4-11 and MOLM-13). Notably, BCL-2 was reported to sustain AML stem cell survival through maintenance of the mitochondrial activity of OxPhos (Lagadinou etal., Cell Stem Cell, 2013). Analysis of mitochondrial respiration using a Seahorse Bioanalyzer demonstrated similar levels of oxygen consumption rate (OCR) in parental and resistant cells. Inhibition of BCL-2 with 100nM venetoclax for only 2 hrs. fully blocked baseline and maximal respiratory activity in parental but not in resistant cells. In turn, inhibition of MCL-1 with A-1210477 inhibited respiration in both parental and resistant cells, indicating a role for MCL-1 in sustaining mitochondrial activity in venetoclax-resistant AML cells, which can maintain unperturbed mitochondrial function. In summary, we identified a novel mechanism of resistance to targeted BCL-2 inhibition through upregulation of MAPK leading to increased levels of anti-apoptotic MCL-1 that binds and neutralizes BIM and maintains the mitochondrial OxPhos pathway in AML cells. Concomitant inhibition of BCL-2 and MCL-1, or of BCL-2 and OxPhos could induce synergistic cell death in AML and conceivably prevent the emergence of venetoclax resistance. Disclosures Tyner: Constellation Pharmaceuticals: Research Funding; Janssen Research & Development: Research Funding; Agios Pharmaceuticals: Research Funding; Genentech: Research Funding; Array Biopharma: Research Funding; Inctye: Research Funding; Seattle Genetics: Research Funding; Aptose Biosciences: Research Funding; AstraZeneca: Research Funding; Takeda Pharmaceuticals: Research Funding; Leap Oncology: Consultancy. Leverson:AbbVie: Employment, Other: Shareholder in AbbVie. Letai:Astra-Zeneca: Consultancy, Research Funding; Tetralogic: Consultancy, Research Funding; AbbVie: Consultancy, Research Funding. Konopleva:Calithera: Research Funding; Cellectis: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1580-1580
Author(s):  
Daniela Steinbrecher ◽  
Felix Seyfried ◽  
Johannes Bloehdorn ◽  
Billy Michael Chelliah Jebaraj ◽  
Lüder Hinrich Meyer ◽  
...  

Abstract In many cancers the equilibrium of pro- versus anti-apoptotic BCL-2 proteins is deregulated. BCL-2 inhibitors like Venetoclax (VEN) have been shown to be highly active drugs in BCL-2 dependent cancers like chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL). Despite being highly efficient in cell killing, resistance to VEN can be acquired over time. In addition to understanding the underlying mechanisms of resistance to VEN it is important to identify additional treatment options. BDA-366 is a BCL-2 inhibitor with a different mode of action than the BH3 mimetic VEN. BDA-366 acts by inhibiting the BH4 domain and thereby inducing a conversion of anti-apoptotic BCL-2 into a pro-apoptotic protein. BDA-366 showed high effectivity in inducing apoptosis in CLL cells, in primary as well as in cell lines, while all of the CLL cell lines (n=7) tested were resistant to VEN. Furthermore all of the MCL cell lines (n=5) tested were sensitive to the treatment with BDA-366 while only a subset (3 out of 5) responded to treatment with VEN. In order to investigate whether BDA-366 would be a treatment option for VEN-resistant patients, we generated VEN-resistant MCL cell lines (MINO and MAVER-1) by chronic exposure to the drug. In the resistant cell lines, BCL-2 protein levels were not deregulated. In variance to previous reports in diffuse large B cell lymphoma (DLBCL) (Choudhary et al, Cell Death Dis 2015), resistance in MCL cell lines was not mediated by MCL-1 upregulation. In VEN-resistant MINO cells, MCL-1 expression was similar to the parental cells, while MCL-1 was significantly downregulated in VEN-resistant MAVER-1 cells. In contrast, VEN-resistant MCL cell lines showed BCL-XL upregulation as compared to parental cells, which is in line with results obtained in DLBCL (Choudhary et al, Cell Death Dis 2015). Furthermore, dynamic BH3 profiling validated a dependency on BCL-XL in resistant cells and confirmed that resistance was not mediated by MCL-1. The significance of BCL-XL in mediating resistance to VEN was underlined by additional experiments using navitoclax. In contrast to VEN, navitoclax inhibits BCL-2, BCL-XL and BCL-W and was sufficient to induce apoptosis in both parental and resistant cells. In contrast to the BH3 domain inhibitor VEN, the BCL-2 inhibitor BDA-366 acts by converting BCL-2 into a pro-apoptotic molecule. BDA-366 efficiently induced dose dependent apoptosis in VEN-resistant cells. MINO as well as MINO VEN-resistant cells showed the same sensitivity to BDA-366 while VEN-resistant MAVER-1 cells showed reduced sensitivity to BDA-366 as compared to the parental cells. However, with increased BDA-366 concentrations efficient cell killing was achieved in the VEN-resistant cell lines Overall, these results suggest that VEN-resistance is mostly mediated by permanent upregulation of BCL-XL. BCL-2 levels are not deregulated upon development of resistance to VEN. The inhibition of the BH4 domain and thereby converting BCL-2 into a pro-apoptotic protein proved to be a promising therapeutic option even in cancers with acquired resistance to VEN. Disclosures Döhner: Pfizer: Research Funding; Amgen: Consultancy, Honoraria; Jazz: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria; Sunesis: Consultancy, Honoraria, Research Funding; Seattle Genetics: Consultancy, Honoraria; Sunesis: Consultancy, Honoraria, Research Funding; Agios: Consultancy, Honoraria; Pfizer: Research Funding; AROG Pharmaceuticals: Research Funding; Bristol Myers Squibb: Research Funding; Astex Pharmaceuticals: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; AROG Pharmaceuticals: Research Funding; Astellas: Consultancy, Honoraria; Astellas: Consultancy, Honoraria; Agios: Consultancy, Honoraria; Astex Pharmaceuticals: Consultancy, Honoraria; Celator: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Research Funding; Celator: Consultancy, Honoraria; Jazz: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Bristol Myers Squibb: Research Funding; Janssen: Consultancy, Honoraria; Seattle Genetics: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding. Stilgenbauer:Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Boehringer-Ingelheim: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; GSK: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Hoffmann La-Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Genentech: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Genzyme: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Gilead: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; AbbVie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Mundipharma: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pharmcyclics: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Sanofi: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4490-4490 ◽  
Author(s):  
Ravi Dashnamoorthy ◽  
Nassera Abermil ◽  
Afshin Behesti ◽  
Paige Kozlowski ◽  
Frederick Lansigan ◽  
...  

Abstract Background: Fatty acid (FA) metabolism is altered in several cancers through increased de novo synthesis of lipids via up-regulation fatty acid synthase (FASN) and increased utilization of lipids via β-oxidation. We investigated the dependence of DLBCL survival on FA metabolism. In addition, we examined novel FASN inhibitors TVB3567 and TVB3166 in comparison with cerulenin for the effects on cell survival and PI3K and MAPK-related biological pathways associated with tumor-related FA metabolism in DLBCL. Methods: FASN inhibitors, TVB3567 and TVB3166 (3V Biosciences, CA), cerulenin (FASN inhibitor), orlistat (anti-lipoprotein lipase (LPL) and FASN), PI3K/mTOR, and MEK small molecule inhibitors were studied in OCI-LY3, OCI-LY19, SUDHL4, SUDHL6, and SUDHL10 DLBCL cell lines for the effects of FA inhibition on lipid metabolism, cell signaling, and cell death. The effects of FASN inhibition on global gene expression profile (GEP) were also determined with Affymetrix Human 2.0 ST Genechip with Gene set enrichment analysis (GSEA). We also utilized short hairpin RNA interference (shRNA) to study interactions between FASN and PI3K/MAPK signaling. Finally, AutoDock Vina software (autodock.scripps.edu) was utilized to analyze drug target (FASN enzyme) binding affinity and assist in the design of FASN inhibitors with higher target binding affinity. Results: DLBCL cell lines OCI-LY3, SUDHL4, and SUDHL6 grown in the presence of lipoprotein-depleted serum showed exquisite sensitivity to lipid deprivation resulting in near complete cytotoxicity by MTT. Lipid deprivation-induced apoptotic cell death, detected as cleaved caspase 3 and PARP and Annexin-V/PI positivity, in these cells. Further, these effects were completely rescued by Very Low Density Lipoprotein (VLDL) supplementation to growth medium in SUDHL4 confirming the high lipid-dependency on cell survival in DLBCL. Treatment with pharmacological inhibitors of FASN (ie, TVB3567, TVB3166, cerulenin, or orlistat) resulted in a dose- and time-dependent reduction in cell viability in all DLBCL cell lines. Ingenuity Pathway Analysis (IPA) from GEP with cerulenin-treated OCI-LY3 showed prominent suppression of CD40, TNF, and NFκB dependent inflammatory responses as well as activation of apoptosis as predominant biological activities including significant down-regulation of genes involved in Krebs cycle and p38 MAPK pathways. Interestingly, upstream regulation by IPA predicted activation of MEK/ERK and MYC-dependent functions; and in OCI-LY3 with shRNA knock down of FASN, we observed constitutive activation of ERK as detected with increased phosphorylation by western blot. Activation of MEK/ERK and MYC is expected in part owing to metabolic stress induced by FASN inhibition. Considering the impact of MEK/ERK pathways on lipid metabolism, we next investigated the impact of MEK/ERK on FA metabolism. FASN was significantly decreased following MEK or ERK shRNA in OCILY-3 and SUDHL10 cells. Similarly, pharmacological inhibition of MEK or PI3K/mTOR (using novel small molecule agents AZD6244 (selumetinib) or BEZ235, respectively) resulted in marked down-regulation of FASN expression. Based on these results, FASN inhibition appears to a promising therapeutic target for the treatment of DLBCL, however attaining clinical efficacy with existing compounds require the effective drug concentration to be within the nanomolar range. Thus, we utilized AutoDock to determine drug docking enzyme inhibition constant (ki). We identified high ki values of 33μM and 180μM for Cerulenin and Orilstat, respectively. Therefore, we have developed/constructed modified novel and potent anti-FA compounds with ki <1μM that are currently being investigated. Conclusions: Collectively, we demonstrated that DLBCL cell survival is highly dependent on FA metabolism and that targeting lipid metabolism may be harnessed as a potential therapeutic strategy. We also showed that MEK/ERK-dependent mechanisms are intimately involved in promoting lipid addiction in DLBCL cells. Further investigation is warranted to delineate the mechanisms through which MEK/ERK regulate FASN expression and to determine in vivo implications of FASN inhibition on DLBCL tumor growth. In addition, continued development, design, and enhancement are needed to construct the most optimal anti-FA therapeutic agents. Disclosures Lansigan: Teva Pharmaceuticals: Research Funding; Spectrum Pharmaceuticals: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4451-4451
Author(s):  
Ryo Uozaki ◽  
Shuji Aida ◽  
Takasi Yamagughi ◽  
Tomofumi Yamamoto ◽  
Sho Kashiwazaki ◽  
...  

Abstract [Introduction] Recent development of novel drugs significantly improved prognosis of Multiple Myeloma (MM). Immunomodulatory drugs (IMiDs) and proteasome inhibitors play central roles in MM therapy. However expanded usage of lenalidomide (Len) has increased the number of Len-resistant patients. And limited information is obtainable with regand to Len-resistant mechanism, such as overexpression and genetic mutation of IMiDs-binding protein, celeblon (CRBN); thus, elucidating the Len-resistant mechanism and development of drugs overcoming the Len-resistance are very important for improving the outcome of MM. The purposes of this study are [1] to clarify the molecular mechanism of Len-resistance using Len-resistant MM cell lines [2] to confirm the mechanism of CRBN independent myeloma cell death by novel phthalimide-derivatives, TC11 and PEG(E)-TC11. [Method] [1] In our laboratory, Len-resistant cell lines, KMS21R, KMS27R and MUM24R have been established by long-term co-culture with low-dose Len. Using these cell lines, we examined expression of CRBN and the downstream molecules, IKZF1/3, IRF4 and c-MYC by western blotting. We also examined the mutation of CRBN in KMS27R. [2] We have originally developed a novel phthalimide-derivative, TC11 and PEG(E)-TC11 synthesized for improving water solubility. We examined whether TC11 and PEG(E)-TC11 induced cell death to Len-resistance MM or not. [Result] [1] First, we validated expression of CRBN and the down-stream molecules, which mediate pharmacological action of Len. Decreased expression of CRBN and subsequent up-regulation of down-stream IKZF1 were confirmed in KMS21R cell. In KMS27R cell, IKZF 1/3 expressions are increased without alteration of CRBN expression level. Thus, genetic mutation in CRBN or IKZF1 is suspected in KMS27R cells. In MUM24R cell, no significant change in the expression levels of the CRBN pathway molecules was confirmed, suggesting other molecular alternation than CRBN pathway. [2] TC11 significantly induced apoptosis of Len-resistant cells. We have previously reported that TC11 didn't bind to CRBN and TC11 directly bound to nucleophosmin1 (NPM1) and α-tubulin. It was found that TC11 induced G2/M arrest and subsequent apoptosis by inhibition of tubulin polymerization and NPM1 oligomerization. Fluorescence microscopy observation showed that TC11 treatment induced hyper duplication of centrosomes in MM cells. Water solubility and blood absorption of PEG(E)-TC11 were significantly improved compared with those of TC11. As a consequence, PEG-(E)TC11 significantly delayed tumor growth in xenograft model mice. [Discussion & Conclusion] [1] Our present data suggested diversity of Len-resistant mechanism in MM patients. For example, in KMS21R, decreased expression of CRBN was likely the cause of Len-resistance. In KMS27R, genetic mutation in CRBN-IKZF1 pathway caused inhibition of IKZF1 degradation. In MUM24R, the Len-resistant mechanism didn't relate to the CRBN pathway but to unknown molecular mechanism. Len-resistant cell lines are useful tools for studying Len-resistant mechanisms and developing drugs overcoming Len-resistance. [2]TC11 abrogated tubulin polymerization and NPM1 oligomerization, induced centrosome disruption and G2/M arrest. Since G2/M check point doesn't closely rely on p53. TC11 was able to induce apoptosis of MM cells with high-risk cytogenetic mutations such as deletion of TP53 gene. TC11 and PEG-(E)TC11 are expected as a candidate compound overcoming Len-resistance and high-risk MM. Disclosures Matsushita: Amgen: Research Funding. Hattori:Takeda: Research Funding; IDAC inc.: Research Funding.


Author(s):  
Tomofumi Yamamoto ◽  
Jun Nakayama ◽  
Yusuke Yamamoto ◽  
Masahiko Kuroda ◽  
Yutaka Hattori ◽  
...  

Multiple myeloma (MM) is a hematopoietic malignancy whose prognosis has improved with the development of new agents such as lenalidomide over the last decade. However, long-term exposure to drugs induces the acquisition of resistance by MM cells and leads to treatment failure and poor prognosis. Here, we show the molecular and cellular mechanisms of lenalidomide resistance in MM. In a comparison between lenalidomide-resistant cell lines and the parental cell lines, the EV (Extracellular versicles) secretion and adherence abilities were significantly elevated in the resistant cells. Whole-transcriptome analysis revealed that the SORT1 and LAMP2 genes were key regulators of EV secretion. Silencing of these genes caused decreased EV secretion and loss of cell adhesion in the resistant cells, resulting in increased sensitivity to lenalidomide. Analysis of publicly available transcriptome data confirmed the relationship between genes related to EV secretion and cell adhesion and patient prognosis. Together, our findings reveal a novel mechanism of lenalidomide resistance in MM mediated by EV secretion and cell adhesion via SORT1 and LAMP2.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kana Oiwa ◽  
Naoko Hosono ◽  
Rie Nishi ◽  
Luigi Scotto ◽  
Owen A. O’Connor ◽  
...  

Abstract Background Pralatrexate (PDX) is a novel antifolate approved for the treatment of patients with relapsed/refractory peripheral T-cell lymphoma, but some patients exhibit intrinsic resistance or develop acquired resistance. Here, we evaluated the mechanisms underlying acquired resistance to PDX and explored potential therapeutic strategies to overcome PDX resistance. Methods To investigate PDX resistance, we established two PDX-resistant T-lymphoblastic leukemia cell lines (CEM and MOLT4) through continuous exposure to increasing doses of PDX. The resistance mechanisms were evaluated by measuring PDX uptake, apoptosis induction and folate metabolism-related protein expression. We also applied gene expression analysis and methylation profiling to identify the mechanisms of resistance. We then explored rational drug combinations using a spheroid (3D)-culture assay. Results Compared with their parental cells, PDX-resistant cells exhibited a 30-fold increase in half-maximal inhibitory concentration values. Induction of apoptosis by PDX was significantly decreased in both PDX-resistant cell lines. Intracellular uptake of [14C]-PDX decreased in PDX-resistant CEM cells but not in PDX-resistant MOLT4 cells. There was no significant change in expression of dihydrofolate reductase (DHFR) or folylpolyglutamate synthetase (FPGS). Gene expression array analysis revealed that DNA-methyltransferase 3β (DNMT3B) expression was significantly elevated in both cell lines. Gene set enrichment analysis revealed that adipogenesis and mTORC1 signaling pathways were commonly upregulated in both resistant cell lines. Moreover, CpG island hypermethylation was observed in both PDX resistant cells lines. In the 3D-culture assay, decitabine (DAC) plus PDX showed synergistic effects in PDX-resistant cell lines compared with parental lines. Conclusions The resistance mechanisms of PDX were associated with reduced cellular uptake of PDX and/or overexpression of DNMT3B. Epigenetic alterations were also considered to play a role in the resistance mechanism. The combination of DAC and PDX exhibited synergistic activity, and thus, this approach might improve the clinical efficacy of PDX.


2019 ◽  
Vol 14 (1) ◽  
pp. 454-461 ◽  
Author(s):  
Huamin Zhang ◽  
Haowei Zhang ◽  
Sihui Wang ◽  
Zhihai Ni ◽  
Tiejun Wang

AbstractTargeting 6-phosphogluconate dehydrogenase (6PGD) can inhibit cancer cell proliferation and tumor growth. However, the relationship between 6PGD and cisplatin resistance still needs further study. Cisplatin-sensitive and cisplatin-resistant ovarian cancer OV2008 and C13* lines and lung cancer A549 and A549DDP lines were treated with different concentrations of cisplatin and cell viability was evaluated. We also compared the growth rates and the cell cycle distributions between cisplatin-sensitive and cisplatin-resistant cells. The expression level of 6PGD was detected by immunoblotting. The Chou-Talalay method was used to evaluate the effect of a combination treatment using cisplatin and the small molecule inhibitor 1-Hydroxy-8-methoxy-anthraquinon (S3) that targets 6PGD. The cisplatin-resistant ovarian and lung cancer cell lines grew faster than the cisplatin- sensitive cell lines, with more cells in S and G2 phases in cisplatin-resistant cell lines. The expression level of 6PGD in cisplatin-resistant cell lines was significantly increased compared with cisplatin-sensitive cell lines. Furthermore, treatment of cells with the S3 small molecule inhibitor of 6PGD together with cisplatin could overcome cisplatin resistance. The expression level of 6PGD in cisplatin-resistant cells lines was significantly upregulated, and the resistance to cisplatin of drug-resistant cells lines could be overcome when treated with the small molecule inhibitor S3 that specifically targets 6PGD.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 6058
Author(s):  
Vikas Patel ◽  
István Szász ◽  
Viktória Koroknai ◽  
Tímea Kiss ◽  
Margit Balázs

Combination treatment using BRAF/MEK inhibitors is a promising therapy for patients with advanced BRAFV600E/K mutant melanoma. However, acquired resistance largely limits the clinical efficacy of this drug combination. Identifying resistance mechanisms is essential to reach long-term, durable responses. During this study, we developed six melanoma cell lines with acquired resistance for BRAFi/MEKi treatment and defined the molecular alterations associated with drug resistance. We observed that the invasion of three resistant cell lines increased significantly compared to the sensitive cells. RNA-sequencing analysis revealed differentially expressed genes that were functionally linked to a variety of biological functions including epithelial-mesenchymal transition, the ROS pathway, and KRAS-signalling. Using proteome profiler array, several differentially expressed proteins were detected, which clustered into a unique pattern. Galectin showed increased expression in four resistant cell lines, being the highest in the WM1617E+BRes cells. We also observed that the resistant cells behaved differently after the withdrawal of the inhibitors, five were not drug addicted at all and did not exhibit significantly increased lethality; however, the viability of one resistant cell line (WM1617E+BRes) decreased significantly. We have selected three resistant cell lines to investigate the protein expression changes after drug withdrawal. The expression patterns of CapG, Enolase 2, and osteopontin were similar in the resistant cells after ten days of “drug holiday”, but the Snail protein was only expressed in the WM1617E+BRes cells, which showed a drug-dependent phenotype, and this might be associated with drug addiction. Our results highlight that melanoma cells use several types of resistance mechanisms involving the altered expression of different proteins to bypass drug treatment.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 16-17
Author(s):  
Shunichiro Yasuda ◽  
Satoru Aoyama ◽  
Ryoto Yoshimoto ◽  
Daisuke Watanabe ◽  
Hiroki Akiyama ◽  
...  

【Introduction】 Although Ruxolitinib (RUX), a JAK1/2-inhibitor, is an effective treatment option for primary myelofibrosis, tumor cells become resistant to this drug in many MPN patients, causing poor prognosis of MPN patients. Until now, various studies have elucidated the mechanisms of RUX-resistance in JAK2V617F-mutant MPN cells, including 1) increased JAK2 heterodimerization leading to sustained JAK2 activation, 2) JAK2 kinase domain mutations, and 3) JAK1/JAK3 activations. However, mechanisms of RUX-resistance in MPN cells with CALR mutations have not been fully characterized to date. In this study, we have clarified a mechanism of RUX-resistance in MPN tumor cells with CALR mutations. 【Materials and Methods】 At first, we have created several human cell lines with exogenous MPL expressions (exMPL) and CALR +1 frameshift mutations (CALR-fs) by introductions of V5-tagged MPL and/or FLAG-tagged CALR Del52/Ins5 expressing vectors or the CRISPR/Cas9 technology. We have confirmed that these cell lines had increased JAK/STAT signaling and respond to RUX-treatment. To establish RUX-resistant cell lines, we have cultured these cell lines with low-dose RUX (0.2μM), and gradually increased the concentrations of RUX by 0.1μM every week. We have successfully established RUX-resistant cells that proliferated in the presence of RUX at 0.8μM. Then, we characterized the RUX-resistant cells with CALR-fs/exMPL. To examine whether RUX-resistant cells shows the resistant-phenotype in vivo, we have subcutaneously implanted RUX-resistant cells as well as RUX-sensitive cells into immunocompromised mice. Three weeks after injections of the tumor cells, the mice were euthanized, and the subcutaneous tumors pathologically examined. MPL knockdown experiments showed that high levels of MPL were indispensable in the resistant cell lines. Co-immunoprecipitation assaies showed the interactions of mutant CALR and MPL proteins in RUX-resistant cells. To examine reversibility of RUX-resistance, RUX-resistant cells were cultured without RUX for three months. Finally, we examined pathological features of bone marrow samples of MPN patients with CALR mutations by immunohistochemical staining. 【Results】We have found that RUX-resistant cells had high MPL transcripts, overexpression of both immature and mature MPL, and JAK2. We also found that RUX-resistant cells had increased phosphorylations of JAK1, JAK2, JAK3 STAT5, MEK and ERK. In vivo assay using immunocompromised mice showed the immunohistochemical staining of MPL in the tumors from RUX-resistant cells showed high expression of MPL in the tumor cells. We also found that mature MPL proteins were more stable since proteasome-dependent degradation of mature MPL proteins was impaired in RUX-resistant cells. Knockdown of MPL of RUX-resistant cells by shRNAs decreased intensity of phosphorylations of JAK1, JAK2, STAT5, MEK and ERK, suggesting that the high expression of MPL leads to more potent signaling. Notably, when mutant-CALR proteins were immunoprecipitated, both immature and mature MPL proteins were co-immunoprecipitated: more MPL proteins were pulled down in RUX-resistant cells. In a reciprocal experiment, when MPL proteins were immunoprecipitated, mutant-CALR proteins were co-immunoprecipitated: more mutant-CALR proteins were pulled down in RUX-resistant cells. Reduction of mutated CALR decreased proliferation of the resistant cells, suggesting that a high level of mutant-CALR/MPL complex contributed to RUX-resistance in these cells. When the resistant cells were cultured in the absence of RUX, RUX-resistance was reversed with reduction of MPL transcripts, mature MPL and JAK2 proteins and mutant-CALR/MPL complex. Immunohistochemical staining showed that MPL staining intensity of megakaryocytes of MF patients with CALR mutations were higher than those of patients with JAK2V617F or normal individuals. MPL expressions were higher after RUX-treatment in MF patients with both JAK2V617F mutations and CALR mutations. 【Discussion】 Overexpression of MPL is a common mechanism after RUX-treatment in MPN cells with both JAK1V617F mutations and CALR mutations. In RUX-resistant cells with CALR mutations, MPL overexpression leads to the high level of mutant-CALR/MPL complex, causing resistance to RUX. This novel mechanism could be a new therapeutic target to overcome RUX-resistance in MPN cells with CALR mutations. Disclosures Komatsu: Otsuka Pharmaceutical Co., Ltd., Shire Japan KK, Novartis Pharma KK, PharmaEssentia Japan KK, Fuso Pharmaceutical Industries, Ltd., Fujifilm Wako Pure Chemical Corporation, Chugai Pharmaceutical Co., Ltd., Kyowa Hakko Kirin Co., Ltd., Takeda Pharmaceutica: Research Funding; Otsuka Pharmaceutical Co., Ltd., PharmaEssentia Japan KK, AbbVie GK, Celgene KK, Novartis Pharma KK, Shire Japan KK, Japan Tobacco Inc: Consultancy; Takeda Pharmaceutical Co., Ltd, Novartis Pharma KK, Shire Japan KK: Speakers Bureau; AbbVie: Other: member of safety assessment committee in M13-834 clinical trial.; PPMX: Consultancy, Research Funding; Meiji Seika Pharma Co., Ltd.: Patents & Royalties: PCT/JP2020/008434, Research Funding.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuzo Sato ◽  
Masaru Tomita ◽  
Tomoyoshi Soga ◽  
Atsushi Ochiai ◽  
Hideki Makinoshima

Malignant pleural mesothelioma (MPM) is an invasive malignancy that develops in the pleural cavity, and antifolates are used as chemotherapeutics for treating. The majority of antifolates, including pemetrexed (PMX), inhibit enzymes involved in purine and pyrimidine synthesis. MPM patients frequently develop drug resistance in clinical practice, however the associated drug-resistance mechanism is not well understood. This study was aimed to elucidate the mechanism underlying resistance to PMX in MPM cell lines. We found that among the differentially expressed genes associated with drug resistance (determined by RNA sequencing), TYMS expression was higher in the established resistant cell lines than in the parental cell lines. Knocking down TYMS expression significantly reduced drug resistance in the resistant cell lines. Conversely, TYMS overexpression significantly increased drug resistance in the parental cells. Metabolomics analysis revealed that the levels of dTMP were higher in the resistant cell lines than in the parental cell lines; however, resistant cells showed no changes in dTTP levels after PMX treatment. We found that the nucleic acid-biosynthetic pathway is important for predicting the efficacy of PMX in MPM cells. The results of chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR) assays suggested that H3K27 acetylation in the 5′-UTR of TYMS may promote its expression in drug-resistant cells. Our findings indicate that the intracellular levels of dTMP are potential biomarkers for the effective treatment of patients with MPM and suggest the importance of regulatory mechanisms of TYMS expression in the disease.


Sign in / Sign up

Export Citation Format

Share Document