scholarly journals Chuvash Polycythemia Patients from Afghanistan and Southern India Share a Common VHL Gene Haplotype. Support for Its Origin before Asians and Europeans Diverged

Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 930-930
Author(s):  
Christine Min ◽  
Jihyun Song ◽  
Joachim R. Goethert ◽  
Soo Jin Kim ◽  
Victor R. Gordeuk ◽  
...  

Abstract Chuvash polycythemia is a rare autosomal recessive hereditary disease, with affected homozygotes having decreased survival mainly because of increased incidence of stroke and other thrombotic complications. Intriguingly this risk may be augmented, rather than ameliorated, by phlebotomies (Sergueeva et al, Blood, 2015, and Haematologica 2017). Chuvash polycythemia is characterized by a C to T missense mutation of the von Hippel Lindau (VHL) gene at nucleotide 589 (VHLC589T, encoding VHLR200W). VHL is a negative regulator of hypoxia-inducible factor (HIF) α subunits. Homozygosity for VHLC589T upregulates hypoxic responses through constitutively augmented HIF signaling even in normoxia, resulting in an increase of erythropoiesis. Heterozygosity leads to only mild augmentation of hypoxia sensing. Chuvash polycythemia was first identified in people of the Chuvash region in Russia, where it has estimated heterozygosity frequency of 1.7%, likely due to a founder effect. The incidence of Chuvash polycythemia elsewhere is sporadic, and the condition is found in other ethnic groups, including northern Indians of Indo-European ethnicity and northern Europeans. Another hot spot of gene frequency was found among Italians on the island of Ischia. We previously published that VHLC589Thomozygotes from various parts of the world share a common VHL haplotype, and from the size of the shared haplotype, we could calculate that it originated from the same founder about 30-50,000 years ago (Liu, et al, Blood 2004). The same shared haplotype was also identified in Ischia in VHLC589Thomozygotes (Perrotta et al, Blood 2006). A single individual from Turkey had the VHLC589T mutation on a different haplotype (Turkish haplotype, Cario, et al, Heamatologica, 2005) demonstrating the existence of another independent founder of the VHLC589T mutation. Two polycythemic patients with VHLC589T mutation were recently referred to us, one from Afghanistan (among people using the Dravidian language who had frequent historical interactions with Turkey) and the other from southern India (the ethnicity of which is also Dravidian and distinct from Indo-European ethnicity). We hypothesized that the Chuvash polycythemia patients, who originated from Afghanistan and Southern India, might have the Turkish haplotype, strengthening support for two independent founders of this haplotype. We analyzed the VHL haplotype of these 2 individuals using 6 selected single nucleotide polymorphisms. Genomic DNA was isolated from granulocytes. Haplotype analysis was performed by Sanger Sequencing. We found that the Chuvash polycythemia patients from Afghanistan and Southern India shared the common Chuvash haplotype (Table). We conclude that the Chuvash haplotype is also present in VHLC589T homozygotes in Afghanistan and Southern India, suggesting that the VHLC589T mutation in these areas arose from the same common founder. The data support the notion that the Chuvash polycythemia VHL mutation originated relatively early in modern human evolution- possibly after humans moved from Africa- as it is present in different ethnic and racial groups (Europeans and Asians). This observation is compatible with the notion that VHLC589T heterozygosity provides some evolutionary advantage (present in various ethnic groups and did not disappear, i.e., absence of negative selection because of increased mortality of homozygotes). It has been shown that heterozygosity for VHLC589T provides some protection from anemia; it is likely that other evolutionary benefits remain to be identified (Miasnikova et al, Haematologica 2011). Yet, such an advantage is very mild (very low gene frequency worldwide of this mutation). These data provide additional evidence that support a VHLC589T origin before Asians and European diverged. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1437-1437
Author(s):  
Alexey Bersenev ◽  
Chao Wu ◽  
Joanna Balcerek ◽  
Wei Tong

Abstract Abstract 1437 Poster Board I-460 Hematopoietic stem cell (HSC) homeostasis and self-renewal are regulated by intrinsic cytokine signaling pathways. One important signaling axis for HSC is the cell surface receptor, Mpl, and its ligand, thrombopoietin (Tpo). Upon Tpo stimulation, Mpl activates Janus Kinase (JAK2), which in turn triggers a cascade of downstream signal transduction pathways that regulate key aspects of cell development. Mice that lack the inhibitory adaptor protein Lnk harbor a vastly expanded HSC pool with enhanced self-renewal. We previously demonstrated that Lnk controls HSC self-renewal predominantly through the Mpl/JAK2 pathway. Lnk binds directly to phosphorylated tyrosine 813 in JAK2 upon Tpo stimulation. Moreover, Lnk-deficient HSCs display potentiated JAK2 activation. Dysregulation of cytokine receptor signaling pathways frequently lead to hematological malignancies. Abnormal activation of JAK2 by a chromosomal translocation between the transcription factor Tel and JAK2 (Tel/JAK2) was shown to cause atypical Chronic Myelogenous Leukemia (aCML) in human patients. Moreover, the JAK2 V617F mutation has been observed at high frequency in several myeloproliferative diseases (MPDs). The JAK2V617F retains Lnk binding, suggesting that alterations in Lnk could influence MPD development. Indeed, we found that loss of Lnk accelerates and exacerbates oncogenic JAK2-induced MPD in mouse transplant models. Specifically, Lnk deficiency enhanced cytokine signaling, thereby augmenting the ability of oncogenic JAK2 to expand myeloid progenitors. To test whether the interaction between Lnk and JAK2V617F directly constrains MPD development in mice, we transplanted wild-type bone marrow cells expressing the JAK2V617F/Y813F double mutant that does not interact with Lnk (WT;JAK2VF/YF). WT;JAK2VF/YF engrafted mice exhibited increased myeloid expansion when compared to WT;JAK2VF mice, and conferred accelerated polycythemia vera development in secondary transplants. In summary, we identified Lnk as a physiological negative regulator of JAK2 in stem cells that may constrain leukemic transformation conferred by oncogenic JAK2. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3665-3665
Author(s):  
Feng Guo ◽  
Peng Zhou ◽  
Liang Ma

Abstract Abstract 3665 Poster Board III-601 Introduction Hodgkin and Reed-Sternberg (H-RS) cells are originated from germinal center B cells. Constitutive nuclear factor κB (NF-κB) activation is one of the molecular characteristic futures of H-RS cells. TNFR-associated factors (TRAFs) participate in a wide range of biological processes, such as adaptive and innate immunity, stress response, and bone metabolism, which are mediated by the induction of cell survival, proliferation, and differentiation. Among those, TRAF3 are reported as a negative regulator of the alternative NF-κB signaling pathway in B cells. How TRAF3 functions in H-RS cells is currently unclear. Methods Electromobility shift assay (EMSA) was performed to examine the NF-κB activity in B cell-derived Hodgkin's cells (L428 and KM-H2). An ELISA-based NF-κB family transcription factor activity assay was performed to quantify NF-κB DNA-binding in nuclear extracts from L428 cells. p100 processing, the expression of other NF-κB family members in the cytoplasm, and TRAF3 expression were detected by Western blot analysis. The effects of TRAF3 in L428 cells were studied by transient expression of TRAF3 expression vector. Results In this study, we found that TRAF3 was minimally detected in B cell-derived Hodgkin's cell lines (L428 and KM-H2) either in mRNA or protein levels. Both the classical (p50-RelA) and the alternative (p52-RelB) NF-kB activity were consistently activated in L428 cells, measured by EMSA and TransAM NF-kB activity assay. The enhanced alternative NF-κB activity, accompanied by increased p100 processing and RelB accumulation in the cytoplasm were detected in L428 cells. Transient transfection of TRAF3-expression vector enforced the expression of TRAF3 and blocked the p100 processing in L428 cells. The alternative NF-kB activity was partially decreased whereas the classical NF-kB activity remained intact. In addition, the increased TRAF3 expression did not affect the anti-apoptotic effects in L428 cells. Conclusions Not only the classical NF-κB activity but also the alternative NF-κB activity characterized by p100 processing and p52-RelB nuclear localization is constitutively activated in B cell-derived lymphoma cells. Lack of TRAF3 expression might be one of the reasons for the aberrant expression of alternative NF-κB activity. TRAF3 is indeed an important molecule regulating the activation of the alternative NF-kB activity but not the classical NF-kB activity in H-RS cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 800-800
Author(s):  
Roberto Negro ◽  
Pablo G Longo ◽  
Michela Tarnani ◽  
Stefania Gobessi ◽  
Luca Laurenti ◽  
...  

Abstract Abstract 800 CLL B cells display many features that suggest a role for antigen stimulation in the development and progression of the disease. These include the expression of stereotyped B-cell receptors (BCRs), the association between IgVH gene mutation status and prognosis, and the gene-expression profile of antigen-stimulated B cells. In addition, CLL B cells have other BCR-related features that distinguish them from normal B lymphocytes, such as lower levels of surface Ig, less efficient BCR signal transduction and increased basal activity of the proximal BCR signaling molecules Lyn and Syk. We have now investigated whether any of these features are related to aberrant expression or function of the phosphatases SHP-1, SHP-2 and Lyp (PTPN22), which regulate the amplitude and duration of the BCR signal by dephosphorylating various components of the BCR signal transduction unit. These phosphatases are also interesting because mutated or polymorphic variants have been linked to various malignant or autoimmune diseases. We started our study by performing nucleotide sequence analysis of the complete coding region of SHP1, SHP2 and Lyp in 8, 21 and 29 CLL B cell samples, respectively. Overall, only two mutations were identified (an R527C substitution in SHP2 and a Q456E substitution in Lyp, each in a single patient), suggesting that these phosphatases are infrequently mutated in CLL. The previously reported Lyp polymorphisms R620W and R263Q were observed in 2 additional cases. We next investigated expression of these phosphatases in purified CLL and normal B cells by immunoblotting. Expression of SHP1 and SHP2 was relatively uniform in the different CLL B-cells samples (n=42) and was not different from normal B cells (n=4). In contrast, expression of Lyp was markedly higher in most CLL samples, with 35 of the 49 investigated cases exhibiting 2 to more than 10 fold higher levels than normal B cells (n=5) (CLL, mean Lyp levels 4.7, SD +/−3.7; normal B cells, mean Lyp levels 0.9, SD +/−0.1, P=0.022). The mean Lyp levels were somewhat higher in U-CLL than M-CLL (6.0 vs. 3.9) and ZAP-70-positive than ZAP-70-negative cases (5.6 vs. 4.7), but these differences were not statistically significant. Analysis of Lyp expression in various lymphoma B-cell lines (n=9) also did not reveal significant differences with respect to normal B-cells, suggesting that Lyp overexpression is a specific feature of CLL. To determine what are the consequences of Lyp overexpression on BCR signaling, we downregulated Lyp in primary CLL B-cells by RNA interference and investigated activation of BCR signaling molecules following sIgM crosslinking. Downregulation of Lyp resulted in a substantial increase in BCR-induced phosphorylation of Lyn (Y397), Syk (Y352), BLNK (Y84) and ERK (T202/Y204), suggesting that overexpression of this phosphatase may be at least partially responsible for the lower BCR signaling capacity of CLL B-cells. Since Lyp expression can be induced in resting T cells by activation with anti-CD3, we investigated whether BCR stimulation will have a similar effect on CLL B-cells. A two-fold increase in Lyp levels was observed after 24 hours of sustained BCR stimulation with immobilized anti-IgM, whereas transient stimulation with soluble anti-IgM resulted in a 20% decrease in Lyp levels. These effects were specific for Lyp, since no such changes were observed in the expression of SHP1 and SHP2. In summary, this study shows that CLL B-cells specifically overexpress the phosphatase Lyp, and important negative regulator of BCR signaling that has been implicated in the pathogenesis of several common autoimmune diseases. Given the observation that Lyp can be induced by sustained BCR engagement and in view of recent findings that Lyp is also overexpressed in anergic B cells, these data further support the notion that CLL cells are continuously exposed to (auto)antigen in vivo. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1741-1741
Author(s):  
Chandana Koorella ◽  
Jayakumar Nair ◽  
Louise Carlson ◽  
Megan Murray ◽  
Cheryl H Rozanski ◽  
...  

Abstract Abstract 1741 Multiple myeloma is a neoplasm of bone marrow resident plasma cells characterized by critical interactions between myeloma cells and bone marrow stromal cells. This interaction leads to production of IL-6, an important factor in myeloma cell biology. However, the molecular and cellular components involved in myeloma induced IL-6 production remain largely uncharacterized. While at the cellular level, dendritic cells (DC)-expressing CD80/CD86 (collectively called B7, ligands with short cytoplasmic tails and signaling partners of CD28 expressed on myeloma cells) - in the bone marrow microenvironment have been implicated as being an important component, at the molecular level the CD28-B7 and Notch1-Jagged2 pathways were separately implicated by us (in DC) and others in myeloma induced IL-6 production. Although Notch signaling leading to IL-6 production in DC is well understood, the mechanism of “backsignaling” via B7 is largely uncharacterized. To better understand downstream B7 signaling leading to IL-6 production, DC were stimulated with CD28-Ig (a soluble form of CD28 which mimicks myeloma cell-bound CD28) in the presence or absence of an inhibitor of Notch signaling, gamma secretase inhibitor (GSI). DC treated with CD28-Ig alone produced significantly (p< 0.001) higher levels of IL-6 when compared to DC treated with CD28-Ig and GSI. GSI specifically targeted Notch signaling as observed by decreased expression of Notch gene targets: Hes-1 (2 fold decrease) and Deltex-4 (4 fold decrease). Also, decreased IL-6 levels in presence of GSI were not due to the decrease in B7 expression on DC. To specifically implicate the importance of Notch1 and Jagged2, we blocked Notch1 signaling using blocking antibodies and observed a similar decrease in IL-6 production upon blocking Notch1 signaling. Our results suggest that CD28 mediated IL-6 production is dependent on Notch1 signaling and crosstalk between the Notch1-Jagged2 and CD28-B7 pathways leads to IL-6 production by DC. The model of crosstalk between CD28-B7 and Notch1-Jagged2 pathways was also observed in murine bone marrow derived dendritic cells (BMDC), where a significant (p<0.001) down regulation of IL-6 was observed upon blocking Notch signaling. One possible mechanism of crosstalk involves direct effect of B7 crosslinking by CD28-Ig on Notch expression/signaling leading to increase in IL-6 production. We tested for this possibility in DC and found no significant change in Notch expression/signaling. We thus hypothesized that the mechanism of crosstalk involves molecules downstream to Notch and/or B7. Notch signaling has been reported to be involved in the regulation of PTEN (a negative regulator of the PI3K/Akt pathway). Previous studies have also shown the importance of FoxO3a-a transcription factor tightly regulated by Akt- in regulating IL-6 production in BMDC upon B7 crosslinking. We therefore tested the possible involvement of PTEN (molecule downstream of Notch signaling), Akt and FoxO3a (molecules downstream of B7) in crosstalk between the two pathways aforementioned by testing the effect of GSI on their regulation at the protein level. We observed an approximate 2 fold decrease in phospho-PTEN/PTEN ratio in DC treated with GSI and remained so even after B7 crosslinking at an early time point (15 min. post CD28-Ig treatment.) Further, phospho-Akt/Akt ratio decreased by 1.6 fold in DC treated with both GSI and CD28-Ig compared to CD28-Ig alone at 30 min. We therefore hypothesize a model of crosstalk involving Notch mediated regulation of PTEN leading to IL-6 production via regulation of Akt and possibly FoxO3a upon B7 crosslinking. Interestingly enough “backsignaling” via B7 in myeloma-induced IL-6 production seems to involve molecules well characterized in CD28 signaling of T-cells. Targeting IL-6 induced by crosstalk between these two pathways prompts not only clinical evaluation to improve MM patient outcome but also extends to advancing knowledge in T-cell and normal plasma cell biology as well. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4464-4464
Author(s):  
Colin Grace ◽  
Elisabeth P Nacheva

Abstract Abstract 4464 Philadelphia positive malignant disorders are a clinically divergent group of hemoblastoses with a unique identifying feature, the BCR/ABL1 fusion gene, usually resulting from the chromosome rearrangement t(9;22)(q34;q11) or its variants, that leads to constitutive expression of an aberrant tyrosine kinase. These include chronic myeloid leukaemia (CML) and de novo acute leukaemia of both myeloid Ph(+)AML and lymphoid origin Ph(+)ALL. The latter two disorders are clinically aggressive and therapy challenging even in the era of the powerful tyrosine kinase inhibitors. CML is a multistage progressive disease, which if untreated, inevitably ends as fatal acute leukaemia, either myeloid or lymphoid. The latter is often thought to be indistinguishable from Ph(+)ALL, the most common type of ALL in adults. We have identified DNA sequences the imbalances of which appear to be significantly associated with the disease stage and lineage origin in CML and Ph(+)ALL samples. We used array CGH at a resolution of ~2kb to explore hot spot regions obtained from 102 patient samples comprising 92 CML and controls together with 10 Ph(+)ALL and show how Significance Analysis of Microarrays (1) can be used to identify differences in the genome profile of de novo Ph(+)ALL and lymphoid blast transformation of CML. We show that lymphoid blast crisis CML differs significantly from Ph(+)ALL not only due to the presence of 9p deletions but also due to genomic gains in other chromosomes. Furthermore we identify a sub group of Ph(+)ALL with a distinctive genomic profile. Having identified genome regions of potential interest, ranked in order of significance, out of the 100's of thousands of array results, it is then a challenge to design further experiments to evaluate their contribution to the biology of the BCR/ABL positive disease. 1 Tusher V, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98:5116-5121 (2001). Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 588-588
Author(s):  
Karrune Woan ◽  
Fengdong Cheng ◽  
Hongwei Wang ◽  
Jennifer Rock-Klotz ◽  
Zi Wang ◽  
...  

Abstract Abstract 588 We recently defined a novel role of histone deacetylase 11 (HDAC11), the newest member of the HDAC family, as a negative regulator of IL-10 gene transcription in antigen-presenting cells (APCs).1 To better understand the role of HDAC11 gene expression in immune cells in vivo, we have utilized a BAC (Bacterial artificial chromosome) transgenic mouse in which the EGFP reporter gene was inserted downstream of the HDAC11 promoter region but immediately upstream of the HDAC11 coding sequence (TgHDAC11-EGFP mice).2 In the steady-state, macrophages and B-cells isolated from spleen of TgHDAC11-EGFP mice express low levels of HDAC11 as evidenced by a slight shift in EGFP fluorescence from background. In sharp contrast, we identified a discrete population (11.9%) of T-cells over-expressing HDAC11 as demonstrated both by flow cytometry for EGFP and by qRT-PCR for HDAC11, a majority of which were CD4+ T-cells. Sorting of this EGFP+, CD4+ T-cell population confirmed that the increased EGFP expression correlated with an increased HDAC11mRNA expression. Reminiscent of our prior data in APCs, the increased expression of HDAC11 in T-cells was also inversely correlated with IL-10mRNA expression. Further analyses revealed that in the absence of any stimulation or T-cell polarizing conditions, this EGFP positive population expressed significantly elevated levels of ROR-γt and IL-17 mRNA, markers specific for the TH17 subpopulation. Polarization of wild type CD4+ T-cells into functional TH17 cells was associated with reduction of HDAC11 expression, suggesting a potential role for HDAC11 in regulating T-cell function and/or activation, in particular within the TH17 subset. Further support for this regulatory role of HDAC11 has been provided by our additional findings that T-cells devoid of HDAC11 are indeed hyper-reactive in vitro and in in vivo models. 1. Villagra A, et al. Nat Immunol. 2009 Jan;10(1):92-100. 2. Gong S, et al. Nature. 2003 Oct 30;425(6961):917-25. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 5276-5276
Author(s):  
Jason CC So ◽  
Mary Tang ◽  
Rever Li ◽  
Shau Yin Ha ◽  
Serge Pissard ◽  
...  

Abstract Abstract 5276 Pyruvate kinase (PK) deficiency of red cells (EC: 2.7.1.40) is the commonest inherited enzyme deficiency in the glycolytic pathway, leading to chronic non-spherocytic hemolytic anemia (CNSHA). There are over 220 characterized mutations deposited in a public database (PKLR Mutation Database http://www.pklrmutationdatabase.com). Heterozygous carriers are asymptomatic but homozygotes or compound heterozygotes can have significant anemia leading to transfusion dependency, neonatal death and hydrops fetalis. All ethnic groups are affected but data on Chinese are very scanty. We describe the first case of prenatal diagnosis for PK deficiency in Chinese and emphasize that this disease is an important differential diagnosis in pediatric patients with hemolytic anemia. A Han Chinese presented with hepatosplenomegaly, severe anemia and unconjugated hyperbilirubinemia at birth, necessitating exchange transfusion on day 1 and prolonged phototherapy till day 10 of life. Glucose-6-phosphate dehydrogenase level was normal. His parents were unrelated and asymptomatic. Family history was unremarkable. He developed severe CNSHA on follow up, requiring monthly red cell transfusion to relieve symptoms and to maintain satisfactory growth. Iron chelation therapy was started at 2 years of age and splenectomy was performed at 4 years to reduce transfusion requirement. The baseline PK enzyme level was not known but both parents had a mildly reduced PK level. Genetic analysis of PKLR gene was performed. All 11 exons and promoter were screened using polymerase chain reaction (PCR)-denaturing high performance liquid chromatography followed by PCR-sequencing. The father was found to carry a mutation in exon 8: PKLR: c.1073 G>A (p.Gly358Glu) while the sequencing result was normal in the mother. Quantitative multiplex PCR of short fluorescent fragments detected a rare large deletion removing exon 4 to exon 10 of the PKLR gene in the mother. Gap-PCR mapping confirmed that it to be a deletion previously found in a Vietnamese family (Costa C et al Haematologica 2005) and an Australian family (Fermo E et al Br J Haematol 2005). Both mutations have not been previously reported in Chinese. The proband was found to carry the paternal point mutation and the maternal deletion. Because of the severe clinical course of their first child, the couple requested prenatal biopsy was performed at 12 week of gestation. The fetus was found to be simple heterozygous for the paternal mutation. Pregnancy was allowed to continue and a healthy baby was born. A PK assay performed at the age of 9 months was normal. Mutation studies in a peripheral blood sample at 10 months of age confirmed the PKLR genotype. There was no evidence of hemolytic anemia after 3 years of follow up. Because of its perceived rarity and benignity in many ethnic groups, PK deficiency does not enter early into the differential diagnosis of anemia in pediatric patients. Its potential to cause severe disease is often overlooked and delay in diagnosis is common (Pissard S et al J Pediatr 2007). Genetic characterization and genotype-phenotype correlation studies on PKLR in different populations are indicated to better characterize the disease spectrum and to define the role of prenatal diagnosis in PK deficiency. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 809-809
Author(s):  
Hajime Akada ◽  
Saeko Akada ◽  
Dongqing Yan ◽  
Robert Hutchison ◽  
Golam Mohi

Abstract Abstract 809 The activating JAK2V617F mutation is the most common mutation found in Philadelphia chromosome (Ph)-negative myeloproliferative neoplasms (MPNs), which include polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF). Although a majority of MPN patients carry heterozygous JAK2V617F mutation, loss of heterozygosity (LOH) on chromosome 9p involving JAK2 has been observed in ∼30% of patients with MPNs particularly in PV and PMF. JAK2V617F homozygosity through 9pLOH has been linked to more severe MPN phenotype. However, the contribution of 9pLOH in the pathogenesis of MPNs remains unclear. To investigate the role of wild-type JAK2 in MPNs induced by JAK2V617F, we have utilized conditional Jak2 knock-out and Jak2V617F knock-in alleles and generated heterozygous, hemizygous and homozygous Jak2V617F mice. Whereas heterozygous Jak2V617F expression results in a polycythemia vera-like disease in mice, loss of wild-type Jak2 allele in hemizygous or homozygous Jak2V617F mice results in a significantly greater increase in reticulocytes, white blood cells, neutrophils and platelets in the peripheral blood and larger spleen size. We also have found that hemizygous or homozygous Jak2V617F expression significantly increased megakaryocyte-erythroid progenitors in the bone marrow and spleens and marked infiltration of neutrophils in the liver compared with heterozygous Jak2V617F. More importantly, hemizygous or homozygous Jak2V617F mice show accelerated myelofibrosis compared with heterozygous Jak2V617F-expressing mice. Thus, loss of wild type Jak2 allele increases myeloid cell expansion and enhances the severity of the MPN. Together, these results suggest that wild-type Jak2 serves as a negative regulator of MPN induced by Jak2V617F. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4931-4931
Author(s):  
Caixia Li ◽  
Xiao Yu ◽  
Yibei Zhu ◽  
Xiaojin Wu ◽  
Xiao Ma ◽  
...  

Abstract T cell immunoglobulin-3(TIM-3) is known as a negative regulator in anti-tumor immunity through its reaction with TIM-3 ligand, galectin-9. It has been confirmed that TIM-3 is expressed on Th1 cells, dendritic cells, monocytes, macrophages, malignant stem cells and so on. But the expression of TIM-3 and its clinical implications in patients with acute myeloid leukemia(AML) remains unknown. In this study, we sought to determine the expression and clinical implications of TIM-3 in AML. From August 2012 to June 2013, in total of 32 AML patients with sixteen male and sixteen female were enrolled in this study. We collected their peripheral blood before they received any treatment and then obtained their peripheral blood mononuclear cells(PBMC). Monoclonal antibody was added into PBMC and cell population was analyzed by flow cytometry. Blast cells were identified with SSC CD45±and mature lymphocytes with SSC CD45+. The average expression of TIM-3 on blast cells was 43.46%, while on mature lymphocytes was 13.78% (P<0.001). In univariate analysis, the level of expression was not correlated to the percentage of blast cells and there was no difference between each type of AML. Complete remission was similar between different levels of TIM-3 expression(P>0.05). These results demonstrated that TIM-3 was highly expressed on blast cells than on mature cells in AML, which indicated that TIM-3 could be associated with the differentiation of blast cells and a potential marker to detect the tendency of relapse. TIM-3-targeted antitumor therapy presents a perspective possibility. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 668-668
Author(s):  
Phuong-Hien Nguyen ◽  
Nina Reinart ◽  
Michael Hallek

Abstract The Src family kinase Lyn is predominantly expressed in B cells and plays a central role in initiating B cell receptor (BCR) signaling. Lyn is associated with BCR complexes and is renowned for its role in B cell activation and proliferation. Active Lyn contributes to positive regulation of signalling through tyrosine phosphorylation of components of the BCR. Intriguingly, Lyn was also shown as a negative regulator of BCR signal transduction. Lyn plays an essential role in negative regulation of signalling through its unique ability to phosphorylate immunoreceptor tyrosine based inhibition motifs (ITIM) in inhibitory cell surface receptors. ITIM phosphorylation induces the recruitment of inhibitory phosphatases such as SHP-1/2 and SHIP-1, which attenuate BCR signalling. Lyn-deficient mice have reduced number of B cells and increased numbers of myeloid progenitors. It was reported that expression and activity of Lyn in human chronic lymphocytic leukemia (CLL) is elevated compared to healthy B cells. Besides, higher levels of Lyn are associated with a shorter treatment-free survival of CLL patients. This rises up a hypothesis about Lyn’s significant role in B cell tumorigenesis, malignant transformation of B cells, and the balance between myeloid cells and B lymphocytes. We generated Eµ-TCL1 transgenic LYN-deficient mice (TCL1+/wtLYN-/-) and monitored them in order to identify the population of malignant B cells and to characterize the development of malignant cells in these mice in comparison with Eµ-TCL1 transgenic mice (TCL1+/wtLYNwt/wt). In comparison to TCL1+/wtLYNwt/wt mice, TCL1+/wtLYN-/- mice show a significantly reduced number of malignant B cells in the peripheral blood, as well as a reduced leukocyte count. Besides, TCL1+/wtLYN-/- mice have significantly decreased infiltration of malignant B cells in lymphoid tissues such as spleen, liver, lymph node and bone marrow. This result is also resembled in a hepato-splenomegaly in the TCL1+/wtLYNwt/wt mice. These mice develop severe splenomegaly and hepatomegaly due to infiltration of malignant cells, while TCL1+/wtLYN-/- mice do not develop hepatomegaly. The non-transgenic LYN-/- control mice develop splenomegaly due to infiltration of myeloid cells. Although TCL1+/wtLYN-/- mice have hindered development of TCL1-induced CLL, preliminary data suggest it is not only due to LYN-deficiency in B cell compartment of these mice. Indeed, B cell of TCL1+/wtLYN-/- mice show enhanced proliferation and better survival ex vivo compared to TCL1+/wtLYNwt/wt mice. Notably, TCL1+/wtLYN-/- mice developed a skewed microenvironment which might contribute to CLL down regulation. LYN-/- microenvironment, particularly in aged mice, does not support engraftment of TCL1-induced leukemic B cell as well as LYNwt/wt mice in our transplantation model. These results point to a complex regulation of Lyn signalling in CLL involving not only leukemic cells but also cells of the micromillieu, that needs further investigation. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document