scholarly journals CNX-013-B2, a unique pan tissue acting rexinoid, modulates several nuclear receptors and controls multiple risk factors of the metabolic syndrome without risk of hypertriglyceridemia, hepatomegaly and body weight gain in animal models

2014 ◽  
Vol 6 (1) ◽  
pp. 83 ◽  
Author(s):  
Manoj Sadasivuni ◽  
Bobbili Reddy ◽  
Jaideep Singh ◽  
Mammen O Anup ◽  
Venkategowda Sunil ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Anikó Pósa ◽  
Renáta Szabó ◽  
Krisztina Kupai ◽  
Anett Csonka ◽  
Zita Szalai ◽  
...  

The estrogen deficiency after menopause leads to overweight or obesity, and physical exercise is one of the important modulators of this body weight gain. Female Wistar rats underwent ovariectomy surgery (OVX) or sham operation (SO). OVX and SO groups were randomized into new groups based on the voluntary physical activity (with or without running) and the type of diet for 12 weeks. Rats were fed standard chow (CTRL), high triglyceride diet (HT), or restricted diet (CR). The metabolic syndrome was assessed by measuring the body weight gain, the glucose sensitivity, and the levels of insulin, triglyceride, leptin, and aspartate aminotransferase transaminase (AST) and alanine aminotransferase (ALT). The exercise training combined with the CR resulted in improvements in the glucose tolerance and the insulin sensitivity. Plasma TG, AST, and ALT levels were significantly higher in OVX rats fed with HT but these high values were suppressed by exercise and CR. Compared to SO animals, estrogen deprivation with HT caused a significant increase in leptin level. Our data provide evidence that CR combined with voluntary physical exercise can be a very effective strategy to prevent the development of a metabolic syndrome induced by high calorie diet.


2018 ◽  
Vol 315 (4) ◽  
pp. G602-G617 ◽  
Author(s):  
Erika Tarasco ◽  
Giovanni Pellegrini ◽  
Lynda Whiting ◽  
Thomas A. Lutz

The metabolic syndrome (MetS) is a major health issue worldwide and is associated with obesity, insulin resistance, and hypercholesterolemia. Several animal models were used to describe the MetS; however, many of them do not mimic well the MetS pathophysiology in humans. The ApoE*3Leiden.CETP mouse model overcomes part of this limitation, since they have a humanised lipoprotein metabolism and a heterogeneous response to MetS, similar to humans. The reported heterogeneity among them and their common classification refer to responder (R) and nonresponder (NR) mice; R mice show increased body weight, cholesterol, and triglycerides levels, whereas NR mice do not show this expected phenotype when fed a Western type diet. To define better the differences between R and NR mice, we focused on feeding behavior, body weight gain, glucose tolerance, and lipid parameters, and on an extensive pathological examination along with liver histology analysis. Our data confirmed that R mice resemble the pathological features of the human MetS: obesity, dysplipidemia, and glucose intolerance. NR mice do not develop the full dysmetabolic phenotype because of a severe inflammatory hepatic condition, which may heavily affect liver function. We conclude that R and NR mice are metabolically different and that NR mice have indications of severely impaired liver function. Hence, it is critical to identify and separate the respective mice to decrease data heterogeneity. Clinical chemistry and histological analysis should be used to confirm retrospectively the animals’ classification. Moreover, we point out that NR mice may not be an appropriate control for studies involving ApoE*3Leiden.CETP R mice. NEW & NOTEWORTHY When compared with some other animal models, ApoE*3Leiden.CETP mice are better models to describe the metabolic syndrome. However, there is phenotypic heterogeneity between “responder” and “nonresponder” mice, the latter showing some evidence of hepatic pathology. A full phenotypic characterization and eventually postmortem analysis of the liver are warranted.


2019 ◽  
Vol 2019 ◽  
pp. 1-23 ◽  
Author(s):  
Jintanaporn Wattanathorn ◽  
Supannika Kawvised ◽  
Wipawee Thukham-mee

Currently, the therapeutic strategy against metabolic syndrome and its complications is required due to the increasing prevalence and its impact. Due to the benefits of both mulberry fruit extract and encapsulation technology, we hypothesized that encapsulated mulberry fruit extract (MME) could improve metabolic parameters and its complication risk in postmenopausal metabolic syndrome. To test this hypothesis, female Wistar rats were induced experimental menopause with metabolic syndrome by bilateral ovariectomy (OVX) and high-carbohydrate high-fat (HCHF) diet. Then, they were orally given MME at doses of 10, 50, and 250 mg/kg BW for 8 weeks and the parameters, such as percentage of body weight gain, total cholesterol, triglycerides, HDL-C, LDL-C, atherogenic index, fasting blood glucose, plasma glucose area under the curve, serum angiotensin-converting enzyme (ACE), oxidative stress status, histology, and protein expression of PPAR-γ, TNF-α, and NF-κB in adipose tissues were determined. MME improved body weight gain, adiposity index, glucose intolerance, lipid profiles, atherogenic index, ACE, oxidative stress status, and protein expression of TNF-αand NF-κB. Moreover, MME attenuated adipocyte hypertrophy and enhanced PPAR-γexpression. Taken altogether, MME decreased metabolic syndrome and its complication via the increased PPAR-γexpression. Therefore, MME is the potential candidate for improving metabolic syndrome and its related complications. However, further research in clinical trial is still necessary.


1999 ◽  
Vol 58 (4) ◽  
pp. 773-777 ◽  
Author(s):  
John E. Blundell ◽  
John Cooling

It is now widely accepted that obesity develops by way of genetic mechanisms conferring specific dispositions which interact with strong environmental pressures. It is also accepted that certain dispositions constitute metabolic risk factors for weight gain. It is less well accepted that certain patterns of behaviour (arising from biological demands or environmental influences) put individuals at risk of developing a positive energy balance and weight gain (behavioural risk factors). Relevant patterns of behaviour include long-lasting habits for selecting and eating particular types of foods. Such habits define two distinct groups characterized as high-fat (HF) and low-fat (LF) phenotypes. These habits are important because of the attention given to dietary macronutrients in body-weight gain and the worldwide epidemic of obesity. Considerable evidence indicates that the total amount of dietary fat consumed remains the most potent food-related risk factor for weight gain. However, although habitual intake of a high-fat diet is a behavioural risk factor for obesity, it does not constitute a biological inevitability. A habitual low-fat diet does seem to protect against the development of obesity, but a high-fat diet does not guarantee that an individual will be obese. Although obesity is much more prevalent among HF than LF, some HF are lean with BMI well within the normal range. The concept of 'different routes to obesity' through a variety of nutritional scenarios can be envisaged, with predisposed individuals varying in their susceptibility to different dietary inputs. In a particular subgroup of individuals (young adult males) HF and LF displayed quite different profiles of appetite control, response to nutrient challenges and physiological measures, including BMR, RQ, heart rate, plasma leptin levels and thermogenic responses to fat and carbohydrate meals. These striking differences suggest that HF and LF can be used as a conceptual tool to investigate the relationship between biology and the environment (diet) in the control of body weight.


Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Jee eun Choi ◽  
Mun-Joo Bae ◽  
Sungha Park ◽  
Ki-Soo Park ◽  
Changsoo Kim

Background/Aim: Multiple risk factors including dysipidemia, hypertension and hyperglycemia which cluster together are termed the metabolic syndrome. It means managing the metabolic syndrome is crucial to prevent cardiovascular disease (CVD). Several studies found that CVD is the common disease and the leading cause of on-duty death among firefighters. Although importance of understanding to investigate risk factors that causes CVD among firefighter has been emphasized, research about it is still behind. Thus, to understand risk factor of CVD among firefighters, this study was examined an association between metabolic syndrome and shift work among firefighters. Methods: A total of 257 men firefighters were included from Firefighter Research Enhancement of Safety & Heath (FRESH) cohort in Korea. No history of CV related disease including hypertension and diabetes were selected. Weight circumference, systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured. SBP and DBP were measured three times at interval of five minutes in resting and average of the three of SBP and DBP was used in this analysis. Fasting hyperglycaemia, Triglycerides and HDL cholesterol were analysed from blood sample collected from the participants. Metabolic syndrome, using the modified National Cholesterol Education Program (Adult Treatment Panel III) criteria, was defined. The information of shift works, smoking and alcohol consumption were self-reported from the participants and divided into three; no shift work, 24 hour shift work and 2 or 3 shifts works. To analysis the association between metabolic syndrome and shift works, logistic model was used, adjusting for age, BMI, smoking and alcohol. Results: 26 (10.1%) participants out of 257 were metabolic syndrome in the participants group. The unadjusted prevalence of the metabolic syndrome by shift works is 8.2% in no shift work group, 7.1% in 24 hour shift work group and 15.9% in 2 or 3 shifts work group. Adjusted Odds Ratio (OR) with 95% CI for 24 hours shift work was 1.51 [0.35 6.45] and 4.77 [1.08 20.9] for 3 shifts works. Conclusions: There is an association between metabolic syndrome and shift work in Korea firefighters, which implies shift work might be associated with CVD.


2022 ◽  
Vol 88 ◽  
pp. 104869
Author(s):  
Ju Kyoung Oh ◽  
Robie Vasquez ◽  
Sang Hoon Kim ◽  
Je Hyeon Lee ◽  
Eun Joo Kim ◽  
...  

2017 ◽  
Vol 117 (9) ◽  
pp. 1332-1342 ◽  
Author(s):  
Fang Liu ◽  
Xiong Wang ◽  
Hongjie Shi ◽  
Yuming Wang ◽  
Changhu Xue ◽  
...  

AbstractPolymannuronic acid (PM), one of numerous alginates isolated from brown seaweeds, is known to possess antioxidant activities. In this study, we examined its potential role in reducing body weight gain and attenuating inflammation induced by a high-fat and high-sucrose diet (HFD) as well as its effect on modulating the gut microbiome in mice. A 30-d PM treatment significantly reduced the diet-induced body weight gain and blood TAG levels (P<0·05) and improved glucose tolerance in male C57BL/6J mice. PM decreased lipopolysaccharides in blood and ameliorated local inflammation in the colon and the epididymal adipose tissue. Compared with low-fat and low-sucrose diet (LFD), HFD significantly reduced the mean number of species-level operational taxonomic units (OTU) per sample as well as species richness (P<0·05) but did not appear to affect other microbial diversity indices. Moreover, compared with LFD, HFD altered the abundance of approximately 23 % of the OTU detected (log10 linear discriminant analysis (LDA) score>2·0). PM also had a profound impact on the microbial composition in the gut microbiome and resulted in a distinct microbiome structure. For example, PM significantly increased the abundance of a probiotic bacterium, Lactobacillus reuteri (log10 LDA score>2·0). Together, our results suggest that PM may exert its immunoregulatory effects by enhancing proliferation of several species with probiotic activities while repressing the abundance of the microbial taxa that harbor potential pathogens. Our findings should facilitate mechanistic studies on PM as a potential bioactive compound to alleviate obesity and the metabolic syndrome.


Sign in / Sign up

Export Citation Format

Share Document