scholarly journals Knockdown of LINC00665 inhibits proliferation and invasion of breast cancer via competitive binding of miR-3619-5p and inhibition of catenin beta 1

2020 ◽  
Vol 25 (1) ◽  
Author(s):  
Minhao Lv ◽  
Qixin Mao ◽  
Juntao Li ◽  
Jianghua Qiao ◽  
Xiuchun Chen ◽  
...  

Abstract Background Long intergenic non-protein coding RNA00665 (LINC00665) plays a crucial tumorigenic role in many cancers, such as gastric cancer and lung adenocarcinoma. However, its role and mechanism of action in the progression of breast cancer (BC) are unknown. Methods LINC00665 expression levels were determined using quantitative polymerase chain reaction analysis with BC tissues and cell lines. BC cell proliferation was tested by performing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, whereas BC cell migration and invasion capabilities were analyzed by performing transwell migration assays. Percentages of apoptotic cells were measured by flow cytometry. Interactions between LINC00665 and miR-3169-5p were examined by performing luciferase reporter assays, and the expression levels of proteins, such as β-catenin, were examined by western blot analysis. Results LINC00665 was expressed at high levels in BC tissues and cells. Upregulated LINC00665 expression correlated with tumor size and tumor, node, and metastasis stages, but not with the age of patients. LINC00665 knockdown inhibited BC cell proliferation, migration, and invasion, whereas it promoted apoptosis. Moreover, bioinformatics analysis and the luciferase reporter assay revealed that LINC00665 bound the microRNA (miR) miR-3619-5p. miR-3619-5p expression correlated negatively with LINC00665 expression in BC tissues. miR-3619-5p overexpression inhibited BC cell proliferation, migration, and invasion, but promoted apoptosis. Simultaneous knockdown of LINC00665 and miR-3619-5p led to increased cell proliferation, migration, and invasion, and inhibited apoptosis. Additionally, catenin beta 1, which encodes the β-catenin protein, was the target gene of miR-3619-5p. β-catenin expression clearly decreased after LINC00665 knockdown and miR-3619-5p overexpression, but increased after simultaneous knockdown of LINC00665 and miR-3619-5p. Conclusion LINC00665 knockdown inhibited BC cell proliferation and invasion by binding miR-3619-5p and inhibiting β-catenin expression.

BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Teng Ma ◽  
Huaidong Liu ◽  
Yan Liu ◽  
Tingting Liu ◽  
Hui Wang ◽  
...  

Abstract Background Triple-negative breast cancer (TNBC), in part because of the high metastasis rate, is one of the most prevalent causes of malignancy-related mortality globally. Ubiquitin specific peptidase 6 N-terminal like (USP6NL) has been unmasked to be implicated in some human cancers. However, the precise biological function of USP6NL in TNBC has not been defined. Methods RNA expression was examined by real-time quantitative PCR (RT-qPCR), while USP6NL protein level was tested through western blot. Besides, cell proliferation was assessed by using colony formation assay, whereas cell apoptosis estimated by flow cytometry analysis, JC-1 assay and TUNEL assay. Transwell assays were adopted to detect the migration and invasion of indicated TNBC cells. Immunofluorescence (IF) assay evaluated epithelial-mesenchymal transitions (EMT) progress in TNBC. Further, RNA immunoprecipitation (RIP), RNA pull down and luciferase reporter assays were implemented for measuring the mutual interplay among USP6NL, miR-142-3p and long intergenic non-protein coding RNA 689 (LINC00689). Results Elevated USP6NL level was uncovered in TNBC cells. RNA interference-mediated knockdown of USP6NL inhibited TNBC cell growth, motility and EMT. Further, USP6NL was proved as the target of a tumor-inhibitor miR-142-3p, and LINC00689 augmented USP6NL expression by absorbing miR-142-3p. Importantly, miR-142-3p deficiency or USP6NL overexpression fully abolished the inhibitory effect of LINC00689 silence on TNBC cellular behaviors. Conclusion All data revealed the important role of USP6NL/LINC00689/miR-142-3p signaling in TNBC. The findings might provide a new and promising therapeutic biomarker for treating patients with TNBC.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yuting Hu ◽  
Wei Qiu ◽  
Zhijun Kong ◽  
Siyuan Wu ◽  
Yi Liu ◽  
...  

Mounting evidence has recently shown that role of long noncoding RNA is critical in many human cancers. lncRNA GSTM3TV2 was first proven to play a vital role in pancreatic cancer. However, the mechanism of lncRNA GSTM3TV2 in hepatocellular carcinoma (HCC) is still uncovered. Here, we object to distinguish the expression of lncRNA GSTM3TV2 and reveal its mechanistic relationship with HCC. We observed that the expression of lncRNA GSTM3TV2 and FOSL2 were upregulated in HCC. Knockdown of lncRNA GSTM3TV2 significantly inhibited cell proliferation. Meanwhile, the migration and invasion of HCC cells were greatly decreased by the downregulated lncRNA GSTM3TV2. The luciferase reporter assays showed that lncRNA GSTM3TV2 could be directly bound to miR-597, and the level of miR-597 was also decreased in the tumor tissues. lncRNA GSTM3TV2 could stabilize FOSL2 expression, resulting in the oncogenic properties of lncRNA GSTM3TV2 in HCC. Our study indicated the oncogenic activities of lncRNA GSTM3TV2 and emphasized the role of the miR-597/FOSL2 signaling pathway.


2020 ◽  
Author(s):  
Wei Cao ◽  
Yi Sun ◽  
Long Liu ◽  
Junwei Yu ◽  
Jiabiao Ji ◽  
...  

Abstract Background: Nasopharyngeal carcinoma (NPC) is a highly malignant neoplasm originating from nasopharyngeal mucosa, and the emergence of multi-drug resistance poses a huge challenge for clinical treatment of NPC. LncRNA HOTAIR (HOX antisense intergenic RNA) has been reported to be associated with many malignancies, including NPC. However, the underlying mechanisms of HOTAIR involved in drug resistance in NPC are obscure.Methods: Quantitative polymerase chain reaction (qPCR) was employed to determine the HOTAIR, miR-106a-5p and SOX4 expression in NPC tissues and cells. The target relationship between HOTAIR and miR-106a-5p or miR-106a-5p and SOX4 was determined using dual-luciferase reporter assay. Cell proliferation, apoptosis, migration and invasion were explored using Cell counting kit-8 (CCK-8), flow cytometer and Transwell assays. The protein levels were confirmed using western blot.Results: Our study showed that HOTAIR was upregulated in cisplatin (DDP)-resistant NPC tissues and cells. HOTAIR knockdown decreased the DDP resistance, drug resistance related gene expression, cell proliferation and invasion, and promoted apoptosis of C666-1/DDP and CNE2/DDP cells. Mechanism researches displayed that miR-106a-5p was down-regulated in DDP-resistant NPC tissues and cells. miR-106a-5p directly bound with HOTAIR and was regulated by HOTAIR. SOX4 was inhibited by miR-106a-5p at a posttranscriptional level, and the transfection of miR-106a-5p reversed the upregulation of SOX4 caused by HOTAIR overexpression. Increase or decrease of miR-106a-5p suppressed the effect of HOTAIR upregulation or downregulation on DDP resistance, cell proliferation, invasion and apoptosis of C666-1/DDP and CNE2/DDP cells. Moreover, the transfection of SOX4 siRNA reversed the decrease of DDP resistance, cell proliferation and invasion, and rescued the increase of apoptosis induced by miR-106a-5p inhibition. Conclusions: These data suggested that HOTAIR enhanced DDP resistance of C666-1/DDP and CNE2/DDP cells by affecting cell proliferation, invasion, and apoptosis via miR-106a-5p/SOX4 axis.


2021 ◽  
pp. 1-11
Author(s):  
Min Wei ◽  
Youguo Chen ◽  
Wensheng Du

BACKGROUND: Cervical cancer (CC) is the most common form of gynecological malignancy. Long intergenic non-protein coding RNA 858 (LINC00858) has been identified to participate in multiple cancers. However, the role and mechanism of LINC00858 in CC cells are still elusive. AIM: The aim of this study is to explore the biological functions and mechanisms of LINC00858 in CC cells. METHODS: RT-qPCR analysis was used to examine the expression of LINC00858 in CC cells. EdU and colony formation assay were utilized to assess cell proliferation. TUNEL assay and flow cytometry assay were conducted to assess cell apoptosis. The mechanism regarding LINC00858 was certified through RNA pull down, RIP and luciferase reporter assays. RESULTS: The up-regulated LINC00858 was detected in CC cells. Reduction of LINC00858 effectively subdued CC cells proliferation and stimulated cell apoptosis. LINC00858 was determined to bind with miR-3064-5p and up-regulate VMA21 in CC cells. In rescue assays, miR-3064-5p down-regulation and VMA21 up-regulation were able to counteract the effect caused by LINC00858 decrease on CC cell proliferation and apoptosis. CONCLUSION: LINC00858 enhances cell proliferation, while restraining cell apoptosis in CC through targeting miR-3064-5p/VMA21 axis, implying that LINC00858 may serve as a promising therapeutic target for CC.


Author(s):  
He Zhu ◽  
Hongwei Zhang ◽  
Youliang Pei ◽  
Zhibin Liao ◽  
Furong Liu ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is a common type of malignant human cancer with high morbidity and poor prognosis, causing numerous deaths per year worldwide. Growing evidence has been demonstrated that long non-coding RNAs (lncRNAs) are closely associated with hepatocarcinogenesis and metastasis. However, the roles, functions, and working mechanisms of most lncRNAs in HCC remain poorly defined. Methods Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression level of CCDC183-AS1 in HCC tissues and cell lines. Cell proliferation, migration and invasion ability were evaluated by CCK-8 and transwell assay, respectively. Animal experiments were used to explore the role of CCDC183-AS1 and miR-589-5p in vivo. Bioinformatic analysis, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to confirm the regulatory relationship between CCDC183-AS1, miR-589-5p and SKP1. Results Significantly upregulated expression of CCDC183-AS1 was observed in both HCC tissues and cell lines. HCC patients with higher expression of CCDC183-AS1 had a poorer overall survival rate. Functionally, overexpression of CCDC183-AS1 markedly promoted HCC cell proliferation, migration and invasion in vitro and tumor growth and metastasis in vivo, whereas the downregulation of CCDC183-AS1 exerted opposite effects. MiR-589-5p inhibitor counteracted the proliferation, migration and invasion inhibitory effects induced by CCDC183-AS1 silencing. Mechanistically, CCDC183-AS1 acted as a ceRNA through sponging miR-589-5p to offset its inhibitory effect on the target gene SKP1, then promoted the tumorigenesis of HCC. Conclusions CCDC183-AS1 functions as an oncogene to promote HCC progression through the CCDC183-AS1/miR-589-5p/SKP1 axis. Our study provided a novel potential therapeutic target for HCC patients.


Author(s):  
Xuyan Li ◽  
Xuanfang Zhong ◽  
Xiuhua Pan ◽  
Yan Ji

Growing evidence has demonstrated that numerous microRNAs (miRNAs) may participate in the regulation of gastric carcinogenesis and progression. This phenomenon suggests that gastric cancer-related miRNAs can be identified as effective therapeutic targets for this disease. miRNA-708 (miR-708) has recently been reported to be aberrantly expressed in several types of cancer and contribute to carcinogenesis and progression. However, the expression level, biological roles, and underlying mechanisms of miR-708 in gastric cancer are poorly understood. Here we found that miR-708 was downregulated in gastric cancer tissues and cell lines. Downregulated miR-708 expression was significantly associated with lymphatic metastasis, invasive depth, and TNM stage. Further investigation indicated that ectopic expression of miR-708 prohibited cell proliferation and invasion in gastric cancer. Bioinformatics analysis showed that Notch1 was a potential target of miR-708. Notch1 was further confirmed as a direct target gene of miR-708 in gastric cancer by dual-luciferase reporter assay, reverse transcription quantitative polymerase chain reaction, and Western blot analysis. Furthermore, an inverse association was found between miR-708 and Notch1 mRNA levels in gastric cancer tissues. In addition, restored Notch1 expression rescued the inhibitory effects on gastric cancer cell proliferation and invasion induced by miR-708 overexpression. Our findings highlight the tumor-suppressive roles of miR-708 in gastric cancer and suggest that miR-708 may be investigated as a novel target for gastric cancer treatment.


2020 ◽  
Vol 19 (7) ◽  
pp. 1411-1416
Author(s):  
Fuguang Zhao ◽  
Bo Ma ◽  
Zhenye Lv ◽  
Jie Chen ◽  
Yuanjie Cai ◽  
...  

Purpose: To investigate the potential mechanism by which zerumbone suppresses breast cancer (BC) cells.Methods: Cell viability and Transwell assays were performed to assess the effect of zerumbone on BC cell growth. The downstream target of zerumbone was determined using quantitative polymerase chain reaction assays and immunoblotting. Cell viability assays and immunoblotting were conducted to detect if zerumbone had any effect on BACH1 (BTB domain and CNC homolog 1) expression.Results: Zerumbone suppressed the proliferation, migration, and invasion of BC cells. It also upregulated the expression of microRNA (miR)-708 and, hence, suppressed BACH1 expression. Furthermore, zerumbone suppressed the proliferation and invasion of BC cells by promoting miR-708expression and suppressing BACH1.Conclusion: The findings help clarify the anti-tumor mechanism of zerumbone and provide theoretical and therapeutic bases for the anti-tumor effects of Chinese herbal medicine. Keywords: Breast cancer, Zerumbone, Cell invasion, MiR-708, BACH1


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Li Fan ◽  
Hai Li ◽  
Yun Zhang

Abstract Background Accumulating evidence has associated aberrant long non-coding RNAs (lncRNAs) with various human cancers. This study aimed to explore the role of LINC00908 in prostate cancer (PCa) and its possible underlying mechanisms. Methods Microarray data associated with PCa were obtained from the Gene Expression Omnibus (GEO) to screen the differentially expressed genes or lncRNAs. Then, the expression of LINC00908 in PCa tissues and cell lines was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The localization of LINC00908 in PCa cells was examined by fluorescence in situ hybridization (FISH). The relationship among LINC00908, microRNA (miR)-483-5p, and TSPYL5 was detected by bioinformatics analysis, dual-luciferase reporter assay, RNA pull-down, RNA binding protein immunoprecipitation (RIP), and FISH assays. Cell biological behaviors were assessed after the expression of LINC00908, miR-483-5p, and TSPYL5 was altered in PCa cells. Lastly, tumor growth in nude mice was evaluated. Results Poorly expressed LINC00908 was witnessed in PCa tissues and cells. LINC00908 competitively bound to miR-483-5p to up-regulate the TSPYL5 expression. Overexpression of LINC00908 resulted in reduced PCa cell proliferation, migration and invasion, and promoted apoptosis. Additionally, the suppression on PCa cell proliferation, migration and invasion was induced by up-regulation of TSPYL5 or inhibition of miR-483-5p. In addition, in vivo experiments showed that overexpression of LINC00908 inhibited tumor growth of PCa. Conclusion Overall, LINC00908 could competitively bind to miR-483-5p to increase the expression of TSPYL5, thereby inhibiting the progression of PCa. Therefore, LINC00908 may serve as a novel target for the treatment of PCa.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Li Zhang ◽  
Xin Zhang ◽  
Xin Wang ◽  
Miao He ◽  
Shixing Qiao

Triple-negative breast cancer (TNBC) harbors genetic heterogeneity and generally has more aggressive clinical outcomes. As such, there is urgency in identifying new prognostic targets and developing novel therapeutic strategies. In this study, miR-224 was overexpressed in breast cancer cell lines and TNBC primary cancer samples. Knockdown of miR-224 in MDA-MB-231 cancer cells reduced cell proliferation, migration, and invasion. Through integrating in silico prediction algorithms with KEGG pathway and Gene Ontology analyses, CASP9 was identified to be a potential target of miR-224. miR-224 knockdown significantly increased CASP9 transcript and protein levels. Furthermore, luciferase reporter assays confirmed a direct interaction of miR-224 with CASP9. Our findings have demonstrated that the miR-224/CASP9 axis plays an important role in TNBC progression, providing evidence in support of a promising therapeutic strategy for this disease.


2018 ◽  
Vol 17 (1) ◽  
Author(s):  
Renjie Wang ◽  
Sai Zhang ◽  
Xuyi Chen ◽  
Nan Li ◽  
Jianwei Li ◽  
...  

Abstract Background Circular RNAs (circRNAs) have been found to play critical roles in the development and progression of various cancers. However, little is known about the effects of the circular RNA network on glioblastoma multiforme (GBM). Methods A microarray was used to screen circRNA expression in GBM. Quantitative real-time PCR was used to detect the expression of circMMP9. GBM cells were transfected with a circMMP9 overexpression vector or siRNA, and cell proliferation, migration and invasion, as well as tumorigenesis in nude mice, were assessed to examine the effect of circMMP9 in GBM. Biotin-coupled miRNA capture, fluorescence in situ hybridization and luciferase reporter assays were conducted to confirm the relationship between circMMP9 and miR-124. Results In this study, we screened differentially expressed circRNAs and identified circMMP9 in GBM. We found that circMMP9 acted as an oncogene, was upregulated in GBM and promoted the proliferation, migration and invasion abilities of GBM cells. Next, we verified that circMMP9 served as a sponge that directly targeted miR-124; circMMP9 accelerated GBM cell proliferation, migration and invasion by targeting miR-124. Furthermore, we found that cyclin-dependent kinase 4 (CDK4) and aurora kinase A (AURKA) were involved in circMMP9/miR-124 axis-induced GBM tumorigenesis. Finally, we found that eukaryotic initiation factor 4A3 (eIF4A3), which binds to the MMP9 mRNA transcript, induced circMMP9 cyclization and increased circMMP9 expression in GBM. Conclusions Our findings indicate that eIF4A3-induced circMMP9 is an important underlying mechanism in GBM cell proliferation, invasion and metastasis through modulation of the miR-124 signaling pathway, which could provide pivotal potential therapeutic targets for the treatment of GBM. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document