scholarly journals DNA methylation during human adipogenesis and the impact of fructose

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Giulia Tini ◽  
Vijayalakshmi Varma ◽  
Rosario Lombardo ◽  
Greg T. Nolen ◽  
Gregory Lefebvre ◽  
...  

Abstract Background Increased adipogenesis and altered adipocyte function contribute to the development of obesity and associated comorbidities. Fructose modified adipocyte metabolism compared to glucose, but the regulatory mechanisms and consequences for obesity are unknown. Genome-wide methylation and global transcriptomics in SGBS pre-adipocytes exposed to 0, 2.5, 5, and 10 mM fructose, added to a 5-mM glucose-containing medium, were analyzed at 0, 24, 48, 96, 192, and 384 h following the induction of adipogenesis. Results Time-dependent changes in DNA methylation compared to baseline (0 h) occurred during the final maturation of adipocytes, between 192 and 384 h. Larger percentages (0.1% at 192 h, 3.2% at 384 h) of differentially methylated regions (DMRs) were found in adipocytes differentiated in the glucose-containing control media compared to adipocytes differentiated in fructose-supplemented media (0.0006% for 10 mM, 0.001% for 5 mM, and 0.005% for 2.5 mM at 384 h). A total of 1437 DMRs were identified in 5237 differentially expressed genes at 384 h post-induction in glucose-containing (5 mM) control media. The majority of them inversely correlated with the gene expression, but 666 regions were positively correlated to the gene expression. Conclusions Our studies demonstrate that DNA methylation regulates or marks the transformation of morphologically differentiating adipocytes (seen at 192 h), to the more mature and metabolically robust adipocytes (as seen at 384 h) in a genome-wide manner. Lower (2.5 mM) concentrations of fructose have the most robust effects on methylation compared to higher concentrations (5 and 10 mM), suggesting that fructose may be playing a signaling/regulatory role at lower concentrations of fructose and as a substrate at higher concentrations.

2020 ◽  
Vol 14 ◽  
Author(s):  
Mette Soerensen ◽  
Dominika Marzena Hozakowska-Roszkowska ◽  
Marianne Nygaard ◽  
Martin J. Larsen ◽  
Veit Schwämmle ◽  
...  

Endocrinology ◽  
2018 ◽  
Vol 160 (1) ◽  
pp. 38-54 ◽  
Author(s):  
Keiichi Itoi ◽  
Ikuko Motoike ◽  
Ying Liu ◽  
Sam Clokie ◽  
Yasumasa Iwasaki ◽  
...  

Abstract Glucocorticoids (GCs) are essential for stress adaptation, acting centrally and in the periphery. Corticotropin-releasing factor (CRF), a major regulator of adrenal GC synthesis, is produced in the paraventricular nucleus of the hypothalamus (PVH), which contains multiple neuroendocrine and preautonomic neurons. GCs may be involved in diverse regulatory mechanisms in the PVH, but the target genes of GCs are largely unexplored except for the CRF gene (Crh), a well-known target for GC negative feedback. Using a genome-wide RNA-sequencing analysis, we identified transcripts that changed in response to either high-dose corticosterone (Cort) exposure for 12 days (12-day high Cort), corticoid deprivation for 7 days (7-day ADX), or acute Cort administration. Among others, canonical GC target genes were upregulated prominently by 12-day high Cort. Crh was upregulated or downregulated most prominently by either 7-day ADX or 12-day high Cort, emphasizing the recognized feedback effects of GC on the hypothalamic-pituitary-adrenal (HPA) axis. Concomitant changes in vasopressin and apelin receptor gene expression are likely to contribute to HPA repression. In keeping with the pleotropic cellular actions of GCs, 7-day ADX downregulated numerous genes of a broad functional spectrum. The transcriptome response signature differed markedly between acute Cort injection and 12-day high Cort. Remarkably, six immediate early genes were upregulated 1 hour after Cort injection, which was confirmed by quantitative reverse transcription PCR and semiquantitative in situ hybridization. This study may provide a useful database for studying the regulatory mechanisms of GC-dependent gene expression and repression in the PVH.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Ieva Rauluseviciute ◽  
Finn Drabløs ◽  
Morten Beck Rye

Abstract Background Prostate cancer (PCa) has the highest incidence rates of cancers in men in western countries. Unlike several other types of cancer, PCa has few genetic drivers, which has led researchers to look for additional epigenetic and transcriptomic contributors to PCa development and progression. Especially datasets on DNA methylation, the most commonly studied epigenetic marker, have recently been measured and analysed in several PCa patient cohorts. DNA methylation is most commonly associated with downregulation of gene expression. However, positive associations of DNA methylation to gene expression have also been reported, suggesting a more diverse mechanism of epigenetic regulation. Such additional complexity could have important implications for understanding prostate cancer development but has not been studied at a genome-wide scale. Results In this study, we have compared three sets of genome-wide single-site DNA methylation data from 870 PCa and normal tissue samples with multi-cohort gene expression data from 1117 samples, including 532 samples where DNA methylation and gene expression have been measured on the exact same samples. Genes were classified according to their corresponding methylation and expression profiles. A large group of hypermethylated genes was robustly associated with increased gene expression (UPUP group) in all three methylation datasets. These genes demonstrated distinct patterns of correlation between DNA methylation and gene expression compared to the genes showing the canonical negative association between methylation and expression (UPDOWN group). This indicates a more diversified role of DNA methylation in regulating gene expression than previously appreciated. Moreover, UPUP and UPDOWN genes were associated with different compartments — UPUP genes were related to the structures in nucleus, while UPDOWN genes were linked to extracellular features. Conclusion We identified a robust association between hypermethylation and upregulation of gene expression when comparing samples from prostate cancer and normal tissue. These results challenge the classical view where DNA methylation is always associated with suppression of gene expression, which underlines the importance of considering corresponding expression data when assessing the downstream regulatory effect of DNA methylation.


PLoS Genetics ◽  
2011 ◽  
Vol 7 (2) ◽  
pp. e1001316 ◽  
Author(s):  
Athma A. Pai ◽  
Jordana T. Bell ◽  
John C. Marioni ◽  
Jonathan K. Pritchard ◽  
Yoav Gilad

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2406-2406
Author(s):  
Mira Jeong ◽  
Deqiang Sun ◽  
Min Luo ◽  
Yun Huang ◽  
Myunggon Ko ◽  
...  

Abstract Identification of recurrent leukemia-associated mutations in genes encoding regulators of DNA methylation such as DNMT3A and TET2 have underscored the critical importance of DNA methylation in maintenance of normal physiology. To gain insight into how DNA methylation exerts the central role, we sought to determine the genome-wide pattern of DNA methylation in the normal precursors of leukemia cells: the hematopoietic stem cell (HSC), and investigate the factors that affect alterations in DNA methylation and gene expression. We performed whole genome bisulfite sequencing (WGBS) on purified murine HSCs achieving a total of 1,121M reads, resulting in a combined average of 40X coverage. Using Hidden Markov Model we identified 32,325 under-methylated regions (UMRs) with average proportion of methylation ≤ 10% and by inspecting the UMR size distribution, we discovered exceptionally large “methylation Canyons” which span highly conserved domains frequently containing transcription factors and are quite distinct from CpG islands and shores. Methylation Canyons are a distinct genomic feature that is stable, albeit with subtle differences, across cell-types and species. Canyon-associated genes showed a striking pattern of enrichment for genes involved in transcriptional regulation (318 genes, P=6.2 x 10-123), as well as genes containing a homeobox domain (111 genes, P=3.9 x 10-85). We compared Canyons with TF binding sites as identified from more than 150 ChIP-seq data sets across a variety of blood lineages (>10)19 and found that TF binding peaks for 10 HSC pluripotency TFs are significantly enriched in entirety of Canyons compared with their surrounding regions. Low DNA methylation is usually associated with active gene expression. However, half of Canyon genes associated with H3K27me3 showed low or no expression regardless of their H3K4me3 association while H3K4me3-only Canyon genes were highly expressed. Because DNMT3A is mutated in a high frequency of human leukemias24, we examined the impact of loss of Dnmt3a on Canyon size. Upon knockout of Dnmt3a, the edges of the Canyons are hotspots of differential methylation while regions inside of Canyon are relatively resistant. The methylation loss in Dnmt3a KO HSCs led Canyon edge erosion, Canyon size expansion and addition of 861 new Canyons for a total of 1787 Canyons. Canyons marked with H3K4me3 only were most likely to expand after Dnmt3a KO and the canyons marked only with H3K27me3 or with both marks were more likely to contract. This suggests Dnmt3a specifically is acting to restrain Canyon size where active histone marks (and active transcription) are already present. WGBS cannot distinguish between 5mC and 5hmC, so we determined the genome-wide distribution of 5hmC in WT and Dnmt3a KO HSCs using the cytosine-5-methylenesulphonate (CMS)-Seq method in which sodium bisulfate treatment convert 5hmC to CMS; CMS-containing DNA fragments are then immunoprecipitated using a CMS specific antiserum. Strikingly, 5hmC peaks were enriched specifically at the borders of Canyons. In particular, expanding Canyons, typically associated with highest H3K4me3 marking, were highly enriched at the edges for the 5hmC signal suggesting a model in which Tet proteins and Dnmt3a act concomitantly on Canyon borders opposing each other in alternately effacing and restoring methylation at the edges, particularly at sites of active chromatin marks. Using Oncomine data, we tested whether Canyon-associated genes were likely to be associated with hematologic malignancy development and found Canyon genes were highly enriched in seven signatures of genes over-expressed in Leukemia patients compared to normal bone marrow; in contrast, four sets of control genes were not similarly enriched. Further using TCGA data, we found that expressed canyon genes are significantly enriched for differentially expressed genes between patients with and without DNMT3A mutation (p value<0.05) Overall, 76 expressed canyon genes, including multiple HOX genes, are significantly changed in patients with DNMT3A mutation (p=0.0031). Methylation Canyons, the novel epigenetic landscape we describe may provide a mechanism for the regulation of hematopoiesis and may contribute to leukemia development. Disclosures: No relevant conflicts of interest to declare.


PLoS ONE ◽  
2016 ◽  
Vol 11 (6) ◽  
pp. e0157776 ◽  
Author(s):  
Petr Volkov ◽  
Anders H. Olsson ◽  
Linn Gillberg ◽  
Sine W. Jørgensen ◽  
Charlotte Brøns ◽  
...  

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Nicolau Sbaraini ◽  
Reinaldo Bellini ◽  
Augusto Bartz Penteriche ◽  
Rafael Lucas Muniz Guedes ◽  
Ane Wichine Acosta Garcia ◽  
...  

Abstract Background The Metarhizium genus harbors important entomopathogenic fungi. These species have been widely explored as biological control agents, and strategies to improve the fungal virulence are under investigation. Thus, the interaction between Metarhizium species and susceptible hosts have been explored employing different methods in order to characterize putative virulence determinants. However, the impact of epigenetic modulation on the infection cycle of Metarhizium is still an open topic. Among the different epigenetic modifications, DNA methylation of cytosine bases is an important mechanism to control gene expression in several organisms. To better understand if DNA methylation can govern Metarhizium-host interactions, the genome-wide DNA methylation profile of Metarhizium anisopliae was explored in two conditions: tick mimicked infection and a saprophytic-like control. Results Using a genome wide DNA methylation profile based on bisulfite sequencing (BS-Seq), approximately 0.60% of the total cytosines were methylated in saprophytic-like condition, which was lower than the DNA methylation level (0.89%) in tick mimicked infection condition. A total of 670 mRNA genes were found to be putatively methylated, with 390 mRNA genes uniquely methylated in the tick mimicked infection condition. GO terms linked to response to stimuli, cell wall morphogenesis, cytoskeleton morphogenesis and secondary metabolism biosynthesis were over-represented in the tick mimicked infection condition, suggesting that energy metabolism is directed towards the regulation of genes associated with infection. However, recognized virulence determinants known to be expressed at distinct infection steps, such as the destruxin backbone gene and the collagen-like protein gene Mcl1, were found methylated, suggesting that a dynamic pattern of methylation could be found during the infectious process. These results were further endorsed employing RT-qPCR from cultures treated or not with the DNA methyltransferase inhibitor 5-Azacytidine. Conclusions The set of genes here analyzed focused on secondary metabolites associated genes, known to be involved in several processes, including virulence. The BS-Seq pipeline and RT-qPCR analysis employing 5-Azacytidine led to identification of methylated virulence genes in M. anisopliae. The results provided evidences that DNA methylation in M. anisopliae comprises another layer of gene expression regulation, suggesting a main role of DNA methylation regulating putative virulence determinants during M. anisopliae infection cycle.


2019 ◽  
Vol 116 (30) ◽  
pp. 14995-15000 ◽  
Author(s):  
Justyna Cholewa-Waclaw ◽  
Ruth Shah ◽  
Shaun Webb ◽  
Kashyap Chhatbar ◽  
Bernard Ramsahoye ◽  
...  

Patterns of gene expression are primarily determined by proteins that locally enhance or repress transcription. While many transcription factors target a restricted number of genes, others appear to modulate transcription levels globally. An example is MeCP2, an abundant methylated-DNA binding protein that is mutated in the neurological disorder Rett syndrome. Despite much research, the molecular mechanism by which MeCP2 regulates gene expression is not fully resolved. Here, we integrate quantitative, multidimensional experimental analysis and mathematical modeling to indicate that MeCP2 is a global transcriptional regulator whose binding to DNA creates “slow sites” in gene bodies. We hypothesize that waves of slowed-down RNA polymerase II formed behind these sites travel backward and indirectly affect initiation, reminiscent of defect-induced shockwaves in nonequilibrium physics transport models. This mechanism differs from conventional gene-regulation mechanisms, which often involve direct modulation of transcription initiation. Our findings point to a genome-wide function of DNA methylation that may account for the reversibility of Rett syndrome in mice. Moreover, our combined theoretical and experimental approach provides a general method for understanding how global gene-expression patterns are choreographed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ivo S. Muskens ◽  
Shaobo Li ◽  
Thomas Jackson ◽  
Natalina Elliot ◽  
Helen M. Hansen ◽  
...  

AbstractDown syndrome is associated with genome-wide perturbation of gene expression, which may be mediated by epigenetic changes. We perform an epigenome-wide association study on neonatal bloodspots comparing 196 newborns with Down syndrome and 439 newborns without Down syndrome, adjusting for cell-type heterogeneity, which identifies 652 epigenome-wide significant CpGs (P < 7.67 × 10−8) and 1,052 differentially methylated regions. Differential methylation at promoter/enhancer regions correlates with gene expression changes in Down syndrome versus non-Down syndrome fetal liver hematopoietic stem/progenitor cells (P < 0.0001). The top two differentially methylated regions overlap RUNX1 and FLI1, both important regulators of megakaryopoiesis and hematopoietic development, with significant hypermethylation at promoter regions of these two genes. Excluding Down syndrome newborns harboring preleukemic GATA1 mutations (N = 30), identified by targeted sequencing, has minimal impact on the epigenome-wide association study results. Down syndrome has profound, genome-wide effects on DNA methylation in hematopoietic cells in early life, which may contribute to the high frequency of hematological problems, including leukemia, in children with Down syndrome.


2018 ◽  
Author(s):  
Justyna Cholewa-Waclaw ◽  
Ruth Shah ◽  
Shaun Webb ◽  
Kashyap Chhatbar ◽  
Bernard Ramsahoye ◽  
...  

Patterns of gene expression are primarily determined by proteins that locally enhance or repress transcription. While many transcription factors target a restricted number of genes, others appear to modulate transcription levels globally. An example is MeCP2, an abundant methylated-DNA binding protein that is mutated in the neurological disorder Rett Syndrome. Despite much research, the molecular mechanism by which MeCP2 regulates gene expression is not fully resolved. Here we integrate quantitative, multi-dimensional experimental analysis and mathematical modelling to show that MeCP2 is a novel type of global transcriptional regulator whose binding to DNA creates "slow sites" in gene bodies. Waves of slowed-down RNA polymerase II formed behind these sites travel backward and indirectly affect initiation, reminiscent of defect-induced shock waves in non-equilibrium physics transport models. This mechanism differs from conventional gene regulation mechanisms, which often involve direct modulation of transcription initiation. Our findings uncover a genome-wide function of DNA methylation that may account for the reversibility of Rett syndrome in mice. Moreover, our combined theoretical and experimental approach provides a general method for understanding how global gene expression patterns are choreographed.


Sign in / Sign up

Export Citation Format

Share Document