scholarly journals AVL9 promotes colorectal carcinoma cell migration via regulating EGFR expression

2022 ◽  
Vol 24 (1) ◽  
Author(s):  
Qiong Wu ◽  
Jing De Chen ◽  
Zhuqing Zhou

Abstract Background Despite advanced treatments could inhibit progression of colorectal carcinoma (CRC), the recurrence and metastasis remain challenging issues. Accumulating evidences implicated that AVL9 played a vital role in human cancers, but it’s biological function and mechanism in CRC remain unclear. Aim To investigate the biological role and mechanism of AVL9 in colorectal carcinoma. Results AVL9 expression was significantly upregulated in tumor tissues than that in matched normal tissues both at mRNA and protein levels. High expression of AVL9 was closely correlated with M status, stages and poor prognosis of colorectal carcinoma (CRC) patients. Functionally, AVL9 overexpression promoted cell migration rather than cell proliferation in vitro, whereas AVL9 knockdown exhibited the contrary results. Mechanistically, AVL9 regulated EGFR expression, and knockdown of EGFR restrained AVL9-induced cell migration. Conclusion These findings demonstrated that AVL9 contributed to CRC cell migration by regulating EGFR expression, suggesting a potential biomarker and treatment target for CRC.

2021 ◽  
Author(s):  
Qiong Wu ◽  
JingDe Chen ◽  
Zhuqing Zhou

Abstract Background: Despite advanced treatments could inhibit progression of colorectal carcinoma (CRC), the recurrence and metastasis remain challenging issues. Accumulating evidences implicated that AVL9 played a vital role in human cancers, but it’s biological function and mechanism in CRC remain unclear.Aim: To investigate the biological role and mechanism of AVL9 in colorectal carcinoma.Results: AVL9 expression was significantly upregulated in tumor tissues than that in matched normal tissues both at mRNA and protein levels. High expression of AVL9 was closely correlated with M status, stages and poor prognosis of colorectal carcinoma (CRC) patients. Functionally, AVL9 overexpression promoted cell migration rather than cell proliferation in vitro, whereas AVL9 knockdown exhibited the contrary results. Mechanistically, AVL9 regulated EGFR expression, and knockdown of EGFR restrained AVL9-induced cell migration.Conclusion: These findings demonstrated that AVL9 contributed to CRC cell migration by regulating EGFR expression, implying a potential biomarker for CRC early diagnosis.


2021 ◽  
Vol 9 (2) ◽  
pp. e001364
Author(s):  
Yan Zhang ◽  
Hui Yang ◽  
Jun Zhao ◽  
Ping Wan ◽  
Ye Hu ◽  
...  

BackgroundThe activation of tumor-associated macrophages (TAMs) facilitates the progression of gastric cancer (GC). Cell metabolism reprogramming has been shown to play a vital role in the polarization of TAMs. However, the role of methionine metabolism in function of TAMs remains to be explored.MethodsMonocytes/macrophages were isolated from peripheral blood, tumor tissues or normal tissues from healthy donors or patients with GC. The role of methionine metabolism in the activation of TAMs was evaluated with both in vivo analyses and in vitro experiments. Pharmacological inhibition of the methionine cycle and modulation of key metabolic genes was employed, where molecular and biological analyses were performed.ResultsTAMs have increased methionine cycle activity that are mainly attributed to elevated methionine adenosyltransferase II alpha (MAT2A) levels. MAT2A modulates the activation and maintenance of the phenotype of TAMs and mediates the upregulation of RIP1 by increasing the histone H3K4 methylation (H3K4me3) at its promoter regions.ConclusionsOur data cast light on a novel mechanism by which methionine metabolism regulates the anti-inflammatory functions of monocytes in GC. MAT2A might be a potential therapeutic target for cancer cells as well as TAMs in GC.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Yixin Tong ◽  
Yuan Huang ◽  
Yuchao Zhang ◽  
Xiangtai Zeng ◽  
Mei Yan ◽  
...  

AbstractAt present, colorectal cancer (CRC) has become a serious threat to human health in the world. Dipeptidyl peptidase 3 (DPP3) is a zinc-dependent hydrolase that may be involved in several physiological processes. However, whether DPP3 affects the development and progression of CRC remains a mystery. This study is the first to demonstrate the role of DPP3 in CRC. Firstly, the results of immunohistochemistry analysis showed the upregulation of DPP3 in CRC tissues compared with normal tissues, which is statistically analyzed to be positively correlated with lymphatic metastasis, pathological stage, positive number of lymph nodes. Moreover, the high expression of DPP3 predicts poor prognosis in CRC patients. In addition, the results of cell dysfunction experiments clarified that the downregulation of DPP3 significantly inhibited cell proliferation, colony formation, cell migration, and promoted apoptosis in vitro. DPP3 depletion could induce cell apoptosis by upregulating the expression of BID, BIM, Caspase3, Caspase8, HSP60, p21, p27, p53, and SMAC. In addition, downregulation of DPP3 can reduce tumorigenicity of CRC cells in vivo. Furthermore, CDK1 is determined to be a downstream target of DPP3-mediated regulation of CRC by RNA-seq, qPCR, and WB. The interaction between DPP3 and CDK1 shows mutual regulation. Specifically, downregulation of DPP3 can accentuate the effects of CDK1 knockdown on the function of CRC cells. Overexpression of CDK1 alleviates the inhibitory effects of DPP3 knockdown in CRC cells. In summary, DPP3 has oncogene-like functions in the development and progression of CRC by targeting CDK1, which may be an effective molecular target for the prognosis and treatment of CRC.


2004 ◽  
Vol 33 (1) ◽  
pp. 11-19 ◽  
Author(s):  
RY Li ◽  
HD Song ◽  
WJ Shi ◽  
SM Hu ◽  
YS Yang ◽  
...  

In addition to serving as a fat depot, adipose tissue is also considered as an important endocrine organ that synthesizes and secretes a number of factors. Leptin is an adipocyte-derived hormone that plays a vital role in energy balance. Expression of leptin is regulated by dietary status and hormones. In the present study, we report that galanin, an orexigenic peptide, inhibits leptin expression and secretion in rat adipose tissue and in 3T3-L1 adipocytes. Treatment with galanin (25 micro g/animal) induced approximately 46% down-regulation of leptin secretion at 15 min, followed by 40, 37 and 47% decreases in leptin secretion at 1, 2 and 4 h respectively. Although Northern blot analysis of adipose tissue from the same animals showed that leptin mRNA expression in adipose tissue was unaffected by galanin treatment for 2 h, galanin treatment for 4 h led to decline of leptin mRNA expression in a dose-dependent manner. Meanwhile, treating the rats with galanin had no effect on leptin mRNA expression in the hypothalamus. The inhibitory action of the galanin on leptin mRNA and protein levels was also observed in vitro. When incubated with 10 nM galanin for 48 h, leptin mRNA expression and protein secretion also decreased in 3T3-L1 adipocytes. On the other hand, galanin was found not only to express in rat adipose tissue, but also to increase about 8-fold after fasting. Based on these data, we speculate that increased galanin expression in rat adipose tissue after fasting may be involved in reducing leptin expression and secretion in fasting rats.


2009 ◽  
Vol 133 (9) ◽  
pp. 1403-1412
Author(s):  
Suzanne K. Coberly ◽  
Francine Z. Chen ◽  
Mark P. Armanini ◽  
Yan Chen ◽  
Peter F. Young ◽  
...  

Abstract Context.—RAAG12 is a primate-restricted N-linked carbohydrate antigen present on multiple membrane-associated proteins. RAAG12 is recognized by the RAV12 monoclonal antibody. RAV12 binds to RAAG12-expressing gastrointestinal adenocarcinomas, modifies growth factor-mediated signaling, induces oncotic cell death in vitro, and has antitumor activity toward gastrointestinal tumor xenografts. Objective.—To determine the expression pattern of RAAG12 in normal and tumor tissue to identify indications for clinical study and potential safety issues. Design.—Immunohistochemistry of 36 normal human tissues and a broad range of tumor tissues to profile RAAG12 expression. Results.—More than 90% of colon, gastric, and pancreatic adenocarcinomas expressed RAAG12, and expression was uniform in most samples. Expression of RAAG12 at lower frequency and/or uniformity was observed in other cancers, including esophageal, ovarian, liver, breast, and prostate carcinomas and adenocarcinomas. Similar RAAG12 expression was observed between primary and metastatic colon adenocarcinomas. No staining was seen on cardiovascular, endocrine, neuromuscular, hematopoietic, or nervous system tissue from non–tumor-bearing individuals. RAAG12 was expressed on mucosal and glandular/ductal epithelium. The gastrointestinal tract mucosa and pancreatic/biliary ducts displayed the most uniform reactivity. RAAG12 exhibited differential subcellular localization in these normal, compared with tumor, tissues. Normal polarized epithelia primarily displayed apical membrane and cytoplasmic staining, whereas tumors exhibited whole membrane staining that increased with decreasing differentiation. Conclusions.—High expression of RAAG12 on tumors of gastrointestinal origin suggests these cancers are appropriate targets for RAV12 therapy. Differential subcellular location of RAAG12 on normal epithelia may limit accessibility of RAV12 to the subset of normal tissues that exhibit antigen expression.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yuan He ◽  
Li-Yue Sun ◽  
Jing Wang ◽  
Rui Gong ◽  
Qiong Shao ◽  
...  

Objective. To investigate methylation of the adenomatosis polyposis coli homologue (APC2) promoter and its correlation with prognostic implications in Chinese colorectal cancer (CRC). Methods. The mRNA expression of APC2 in colorectal tissues was evaluated using the database of The Cancer Genome Atlas (TCGA). Methylation analysis of APC2 in tumor (n=66) and corresponding adjacent formalin-fixed and paraffin-embedded (FFPE) tissues (n=44) was performed by Sequenom EpiTYPER® and verified by cloning-based bisulfite sequencing analysis. Demethylation and retrieval of APC2 expression in cell lines HT29, HCT116, and SW480 were treated with 5-aza-2′-deoxycytidine (5-AZC). Results. Analysis of TCGA showed that APC2 mRNA was significantly downregulated in primary tumors when compared to normal tissues (p<0.05). APC2 methylation was upregulated (43.93% vs 7.31%, p<0.05) in tumors compared to adjacent FFPE tissues. In vitro experiments demonstrated that 5-AZC downregulated the methylation of APC2 and retrieved its expression of mRNA and protein levels (p<0.05). Multivariate Cox regression indicated that APC2_CPG_14 was an independent risk factor for overall survival (HR = 6.38, 95% CI: 1.59–25.64, p<0.05). Conclusion. This study indicates that APC2 is hypermethylated and may be a tumorigenesis biomarker for Chinese CRC patients.


2020 ◽  
pp. 1-8
Author(s):  
Yunfeng Zhao ◽  
Cherie Ann Nathan ◽  
Chunjing Zhang ◽  
Hongyan Du ◽  
Manikandan Panchatcharam ◽  
...  

Background: New adjuvant therapies for human head and neck (H&N) cancer to improve the quality of life of the patients are in great demand. Our early studies have demonstrated that uncoupling protein 2 (UCP2) is upregulated in the tumor tissues of H&N cancer compared to the adjacent normal tissues; however, the role of UCP2 in H&N cancer has not been studied. Objective: In this manuscript, we aim to examine whether UCP2 contributes to H&N cancer progression in vitro. Methods: We generated UCP2 stable knockdown H&N cancer cells and detected the effects of UCP2 inhibition on cell proliferation, migration, invasion, 3D spheroid formation, and the sensitivity to a chemodrug treatment. Results: Knockdown of UCP2 suppressed the progression of H&N cancer in vitro, which might be mediated via the following mechanism: 1) increased the G1 phase whereas decreased the S phase of the cell cycle, which could be mediated by suppression of the G1/S regulators including CDK4/6 and cyclin D1. 2) Decreased mitochondrial oxygen consumption, ATP production, and lactate formation, which is consistent with the downregulation of c-Myc. 3) FAK may serve as the upstream signaling molecule, and its action was mediated by Akt and ERK. Conclusions: Our studies first demonstrate that targeting UCP2 may suppress H&N cancer progression in vitro.


2019 ◽  
Vol 8 (11) ◽  
pp. 1880 ◽  
Author(s):  
Else Driehuis ◽  
Sacha Spelier ◽  
Irati Beltrán Hernández ◽  
Remco de Bree ◽  
Stefan M. Willems ◽  
...  

Patients diagnosed with head and neck squamous cell carcinoma (HNSCC) are currently treated with surgery and/or radio- and chemotherapy. Despite these therapeutic interventions, 40% of patients relapse, urging the need for more effective therapies. In photodynamic therapy (PDT), a light-activated photosensitizer produces reactive oxygen species that ultimately lead to cell death. Targeted PDT, using a photosensitizer conjugated to tumor-targeting molecules, has been explored as a more selective cancer therapy. Organoids are self-organizing three-dimensional structures that can be grown from both normal and tumor patient-material and have recently shown translational potential. Here, we explore the potential of a recently described HNSCC–organoid model to evaluate Epidermal Growth Factor Receptor (EGFR)-targeted PDT, through either antibody- or nanobody-photosensitizer conjugates. We find that EGFR expression levels differ between organoids derived from different donors, and recapitulate EGFR expression levels of patient material. EGFR expression levels were found to correlate with the response to EGFR-targeted PDT. Importantly, organoids grown from surrounding normal tissues showed lower EGFR expression levels than their tumor counterparts, and were not affected by the treatment. In general, nanobody-targeted PDT was more effective than antibody-targeted PDT. Taken together, patient-derived HNSCC organoids are a useful 3D model for testing in vitro targeted PDT.


2009 ◽  
Vol 185 (1) ◽  
pp. 77-85 ◽  
Author(s):  
Guangshuo Ou ◽  
Ronald D. Vale

Metazoan cell movement has been studied extensively in vitro, but cell migration in living animals is much less well understood. In this report, we have studied the Caenorhabditis elegans Q neuroblast lineage during larval development, developing live animal imaging methods for following neuroblast migration with single cell resolution. We find that each of the Q descendants migrates at different speeds and for distinct distances. By quantitative green fluorescent protein imaging, we find that Q descendants that migrate faster and longer than their sisters up-regulate protein levels of MIG-2, a Rho family guanosine triphosphatase, and/or down-regulate INA-1, an integrin α subunit, during migration. We also show that Q neuroblasts bearing mutations in either MIG-2 or INA-1 migrate at reduced speeds. The migration defect of the mig-2 mutants, but not ina-1, appears to result from a lack of persistent polarization in the direction of cell migration. Thus, MIG-2 and INA-1 function distinctly to control Q neuroblast migration in living C. elegans.


2019 ◽  
Vol 22 (3) ◽  
pp. 302-310 ◽  
Author(s):  
Q. Y. Li ◽  
K. Yang ◽  
F. G. Liu ◽  
X. G. Sun ◽  
L. Chen ◽  
...  

Abstract Purpose Long non-coding RNAs (lncRNAs) have been shown to play important roles in tumorigenesis, but their biological functions and the underlying molecular mechanisms remain unclear. Alternative splicing of five exons results in three transcript variants of cancer susceptibility 2 (CASC2): the lncRNAs CASC2a, CASC2b, and CASC2c. CASC2a/b have been found to have crucial regulatory functions in a number of malignancies, but few studies have examined the effects of CASC2c in cancers. The objective of the study was to investigate the role of CASC2c in the proliferation and apoptosis of hepatocellular carcinoma (HCC) cells. Methods This study first investigated the expression levels of CASC2c in tumor tissues, corresponding non-tumor tissues and cells using quantitative real-time polymerase chain reaction. The function and underlying molecular mechanism of CASC2c in human HCC were investigated in QGY-7703 cell line, as well as in gastric cancer (GC) cell and colorectal cancer (CRC) cell. Results In the present work, we observed that CASC2c was significantly down-regulated in HCC tissues and cells. Moreover, its overexpression remarkably inhibited the growth, migration, and invasion of HCC cells in vitro and promoted their apoptosis. Furthermore, we demonstrated that CASC2c overexpression decreased p-ERK1/2 levels in HCC, GC, and CRC cells. Interestingly, while overexpression of CASC2c decreased β-catenin expression in HCC and GC cells, it increased that in CRC cells. Conclusion The lncRNA–CASC2c has a vital role in tumorigenesis and cancer progression, and may serve as a biomarker or therapeutic target in cancer treatment via down-regulation of the ERK1/2 and Wnt/β-catenin signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document