scholarly journals Prediction of sgRNA on-target activity in bacteria by deep learning

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Lei Wang ◽  
Juhua Zhang

Abstract Background One of the main challenges for the CRISPR-Cas9 system is selecting optimal single-guide RNAs (sgRNAs). Recently, deep learning has enhanced sgRNA prediction in eukaryotes. However, the prokaryotic chromatin structure is different from eukaryotes, so models trained on eukaryotes may not apply to prokaryotes. Results We designed and implemented a convolutional neural network to predict sgRNA activity in Escherichia coli. The network was trained and tested on the recently-released sgRNA activity dataset. Our convolutional neural network achieved excellent performance, yielding average Spearman correlation coefficients of 0.5817, 0.7105, and 0.3602, respectively for Cas9, eSpCas9 and Cas9 with a recA coding region deletion. We confirmed that the sgRNA prediction models trained on prokaryotes do not apply to eukaryotes and vice versa. We adopted perturbation-based approaches to analyze distinct biological patterns between prokaryotic and eukaryotic editing. Then, we improved the predictive performance of the prokaryotic Cas9 system by transfer learning. Finally, we determined that potential off-target scores accumulated on a genome-wide scale affect on-target activity, which could slightly improve on-target predictive performance. Conclusions We developed convolutional neural networks to predict sgRNA activity for wild type and mutant Cas9 in prokaryotes. Our results show that the prediction accuracy of our method is improved over state-of-the-art models.

Genes ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 862
Author(s):  
Tong Liu ◽  
Zheng Wang

We present a deep-learning package named HiCNN2 to learn the mapping between low-resolution and high-resolution Hi-C (a technique for capturing genome-wide chromatin interactions) data, which can enhance the resolution of Hi-C interaction matrices. The HiCNN2 package includes three methods each with a different deep learning architecture: HiCNN2-1 is based on one single convolutional neural network (ConvNet); HiCNN2-2 consists of an ensemble of two different ConvNets; and HiCNN2-3 is an ensemble of three different ConvNets. Our evaluation results indicate that HiCNN2-enhanced high-resolution Hi-C data achieve smaller mean squared error and higher Pearson’s correlation coefficients with experimental high-resolution Hi-C data compared with existing methods HiCPlus and HiCNN. Moreover, all of the three HiCNN2 methods can recover more significant interactions detected by Fit-Hi-C compared to HiCPlus and HiCNN. Based on our evaluation results, we would recommend using HiCNN2-1 and HiCNN2-3 if recovering more significant interactions from Hi-C data is of interest, and HiCNN2-2 and HiCNN if the goal is to achieve higher reproducibility scores between the enhanced Hi-C matrix and the real high-resolution Hi-C matrix.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1942 ◽  
Author(s):  
Kanghyeok Lee ◽  
Changhyun Choi ◽  
Do Hyoung Shin ◽  
Hung Soo Kim

Heavy rain damage prediction models were developed with a deep learning technique for predicting the damage to a region before heavy rain damage occurs. As a dependent variable, a damage scale comprising three categories (minor, significant, severe) was used, and meteorological data 7 days before the damage were used as independent variables. A deep neural network (DNN), convolutional neural network (CNN), and recurrent neural network (RNN), which are representative deep learning techniques, were employed for the model development. Each model was trained and tested 30 times to evaluate the predictive performance. As a result of evaluating the predicted performance, the DNN-based model and the CNN-based model showed good performance, and the RNN-based model was analyzed to have relatively low performance. For the DNN-based model, the convergence epoch of the training showed a relatively wide distribution, which may lead to difficulties in selecting an epoch suitable for practical use. Therefore, the CNN-based model would be acceptable for the heavy rain damage prediction in terms of the accuracy and robustness. These results demonstrated the applicability of deep learning in the development of the damage prediction model. The proposed prediction model can be used for disaster management as the basic data for decision making.


2021 ◽  
Vol 11 (20) ◽  
pp. 9769
Author(s):  
Huilin Zheng ◽  
Syed Waseem Abbas Sherazi ◽  
Sang Hyeok Son ◽  
Jong Yun Lee

Wafer maps provide engineers with important information about the root causes of failures during the semiconductor manufacturing process. Through the efficient recognition of the wafer map failure pattern type, the semiconductor manufacturing process and its product performance can be improved, as well as reducing the product cost. Therefore, this paper proposes an accurate model for the automatic recognition of wafer map failure types using a deep learning-based convolutional neural network (DCNN). For this experiment, we use WM811K, which is an open-source real-time wafer map dataset containing wafer map images of nine failure classes. Our research contents can be briefly summarized as follows. First, we use random sampling to extract 500 images from each class of the original image dataset. Then we propose a deep convolutional neural network model to generate a multi-class classification model. Lastly, we evaluate the performance of the proposed prediction model and compare it with three other popular machine learning-based models—logistic regression, random forest, and gradient boosted decision trees—and several well-known deep learning models—VGGNet, ResNet, and EfficientNet. Consequently, the comprehensive analysis showed that the performance of the proposed DCNN model outperformed those of other popular machine learning and deep learning-based prediction models.


2019 ◽  
Author(s):  
Seoin Back ◽  
Junwoong Yoon ◽  
Nianhan Tian ◽  
Wen Zhong ◽  
Kevin Tran ◽  
...  

We present an application of deep-learning convolutional neural network of atomic surface structures using atomic and Voronoi polyhedra-based neighbor information to predict adsorbate binding energies for the application in catalysis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Young-Gon Kim ◽  
Sungchul Kim ◽  
Cristina Eunbee Cho ◽  
In Hye Song ◽  
Hee Jin Lee ◽  
...  

AbstractFast and accurate confirmation of metastasis on the frozen tissue section of intraoperative sentinel lymph node biopsy is an essential tool for critical surgical decisions. However, accurate diagnosis by pathologists is difficult within the time limitations. Training a robust and accurate deep learning model is also difficult owing to the limited number of frozen datasets with high quality labels. To overcome these issues, we validated the effectiveness of transfer learning from CAMELYON16 to improve performance of the convolutional neural network (CNN)-based classification model on our frozen dataset (N = 297) from Asan Medical Center (AMC). Among the 297 whole slide images (WSIs), 157 and 40 WSIs were used to train deep learning models with different dataset ratios at 2, 4, 8, 20, 40, and 100%. The remaining, i.e., 100 WSIs, were used to validate model performance in terms of patch- and slide-level classification. An additional 228 WSIs from Seoul National University Bundang Hospital (SNUBH) were used as an external validation. Three initial weights, i.e., scratch-based (random initialization), ImageNet-based, and CAMELYON16-based models were used to validate their effectiveness in external validation. In the patch-level classification results on the AMC dataset, CAMELYON16-based models trained with a small dataset (up to 40%, i.e., 62 WSIs) showed a significantly higher area under the curve (AUC) of 0.929 than those of the scratch- and ImageNet-based models at 0.897 and 0.919, respectively, while CAMELYON16-based and ImageNet-based models trained with 100% of the training dataset showed comparable AUCs at 0.944 and 0.943, respectively. For the external validation, CAMELYON16-based models showed higher AUCs than those of the scratch- and ImageNet-based models. Model performance for slide feasibility of the transfer learning to enhance model performance was validated in the case of frozen section datasets with limited numbers.


2021 ◽  
Vol 13 (2) ◽  
pp. 274
Author(s):  
Guobiao Yao ◽  
Alper Yilmaz ◽  
Li Zhang ◽  
Fei Meng ◽  
Haibin Ai ◽  
...  

The available stereo matching algorithms produce large number of false positive matches or only produce a few true-positives across oblique stereo images with large baseline. This undesired result happens due to the complex perspective deformation and radiometric distortion across the images. To address this problem, we propose a novel affine invariant feature matching algorithm with subpixel accuracy based on an end-to-end convolutional neural network (CNN). In our method, we adopt and modify a Hessian affine network, which we refer to as IHesAffNet, to obtain affine invariant Hessian regions using deep learning framework. To improve the correlation between corresponding features, we introduce an empirical weighted loss function (EWLF) based on the negative samples using K nearest neighbors, and then generate deep learning-based descriptors with high discrimination that is realized with our multiple hard network structure (MTHardNets). Following this step, the conjugate features are produced by using the Euclidean distance ratio as the matching metric, and the accuracy of matches are optimized through the deep learning transform based least square matching (DLT-LSM). Finally, experiments on Large baseline oblique stereo images acquired by ground close-range and unmanned aerial vehicle (UAV) verify the effectiveness of the proposed approach, and comprehensive comparisons demonstrate that our matching algorithm outperforms the state-of-art methods in terms of accuracy, distribution and correct ratio. The main contributions of this article are: (i) our proposed MTHardNets can generate high quality descriptors; and (ii) the IHesAffNet can produce substantial affine invariant corresponding features with reliable transform parameters.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 652 ◽  
Author(s):  
Carlo Augusto Mallio ◽  
Andrea Napolitano ◽  
Gennaro Castiello ◽  
Francesco Maria Giordano ◽  
Pasquale D'Alessio ◽  
...  

Background: Coronavirus disease 2019 (COVID-19) pneumonia and immune checkpoint inhibitor (ICI) therapy-related pneumonitis share common features. The aim of this study was to determine on chest computed tomography (CT) images whether a deep convolutional neural network algorithm is able to solve the challenge of differential diagnosis between COVID-19 pneumonia and ICI therapy-related pneumonitis. Methods: We enrolled three groups: a pneumonia-free group (n = 30), a COVID-19 group (n = 34), and a group of patients with ICI therapy-related pneumonitis (n = 21). Computed tomography images were analyzed with an artificial intelligence (AI) algorithm based on a deep convolutional neural network structure. Statistical analysis included the Mann–Whitney U test (significance threshold at p < 0.05) and the receiver operating characteristic curve (ROC curve). Results: The algorithm showed low specificity in distinguishing COVID-19 from ICI therapy-related pneumonitis (sensitivity 97.1%, specificity 14.3%, area under the curve (AUC) = 0.62). ICI therapy-related pneumonitis was identified by the AI when compared to pneumonia-free controls (sensitivity = 85.7%, specificity 100%, AUC = 0.97). Conclusions: The deep learning algorithm is not able to distinguish between COVID-19 pneumonia and ICI therapy-related pneumonitis. Awareness must be increased among clinicians about imaging similarities between COVID-19 and ICI therapy-related pneumonitis. ICI therapy-related pneumonitis can be applied as a challenge population for cross-validation to test the robustness of AI models used to analyze interstitial pneumonias of variable etiology.


Electronics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 81
Author(s):  
Jianbin Xiong ◽  
Dezheng Yu ◽  
Shuangyin Liu ◽  
Lei Shu ◽  
Xiaochan Wang ◽  
...  

Plant phenotypic image recognition (PPIR) is an important branch of smart agriculture. In recent years, deep learning has achieved significant breakthroughs in image recognition. Consequently, PPIR technology that is based on deep learning is becoming increasingly popular. First, this paper introduces the development and application of PPIR technology, followed by its classification and analysis. Second, it presents the theory of four types of deep learning methods and their applications in PPIR. These methods include the convolutional neural network, deep belief network, recurrent neural network, and stacked autoencoder, and they are applied to identify plant species, diagnose plant diseases, etc. Finally, the difficulties and challenges of deep learning in PPIR are discussed.


Sign in / Sign up

Export Citation Format

Share Document