scholarly journals Proximal femoral head transcriptome reveals novel candidate genes related to epiphysiolysis in broiler chickens

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Jane de Oliveira Peixoto ◽  
Igor Ricardo Savoldi ◽  
Adriana Mércia Guaratini Ibelli ◽  
Maurício Egídio Cantão ◽  
Fátima Regina Ferreira Jaenisch ◽  
...  

Abstract Background The proximal femoral head separation (FHS) or epiphysiolysis is a prevalent disorder affecting the chicken femur epiphysis, being considered a risk factor to infection which can cause bacterial chondronecrosis with osteomyelitis in broilers. To identify the genetic mechanisms involved in epiphysiolysis, differentially expressed (DE) genes in the femur of normal and FHS-affected broilers were identified using RNA-Seq technology. Femoral growth plate (GP) samples from 35-day-old commercial male broilers were collected from 4 healthy and 4 FHS-affected broilers. Sequencing was performed using an Illumina paired-end protocol. Differentially expressed genes were obtained using the edgeR package based on the False Discovery Rate (FDR < 0.05). Results Approximately 16 million reads/sample were generated with 2 × 100 bp paired-end reads. After data quality control, approximately 12 million reads/sample were mapped to the reference chicken genome (Galgal5). A total of 12,645 genes were expressed in the femur GP. Out of those, 314 were DE between groups, being 154 upregulated and 160 downregulated in FHS-affected broilers. In the functional analyses, several biological processes (BP) were overrepresented. Among them, those related to cell adhesion, extracellular matrix (ECM), bone development, blood circulation and lipid metabolism, which are more related to chicken growth, are possibly involved with the onset of FHS. On the other hand, BP associated to apoptosis or cell death and immune response, which were also found in our study, could be related to the consequence of the FHS. Conclusions Genes with potential role in the epiphysiolysis were identified through the femur head transcriptome analysis, providing a better understanding of the mechanisms that regulate bone development in fast-growing chickens. In this study, we highlighted the importance of cell adhesion and extracellular matrix related genes in triggering FHS. Furthermore, we have shown new insights on the involvement of lipidemia and immune response/inflammation with FHS in broilers. Understanding the changes in the GP transcriptome might support breeding strategies to address poultry robustness and to obtain more resilient broilers.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Somayia ElHag ◽  
Ali Abdel Motelib ◽  
Mosaad A. Soltan ◽  
Mohamed Abdel Gawad

The The use of Kaolin as an inert ingredient in feed has been very common in the poultry industry. The present study aimed to investigate the effects of different inclusion rates of Egyptian kaolinite in broiler chickens’ diet on growth performance, immune response, some blood serum changes, and bone development. A total of 240 unsexed one-day-old Avian 48 breed chickens were used in this experiment. The chickens were individually weighed and randomly allotted into 3 equal groups (80 chickens per each group) and each group was subdivided into 4 replicates (20 chickens per replicate), which received one of the three experimental diets (0.0, 0.5, and 1.0% kaolin for groups 1, 2, and 3, respectively) during the experimental period (6 weeks). The obtained data revealed that kaolin addition at the dose of 0.5 or 1.0% in broiler chickens' diet insignificantly increased final body weight by 4.5% and 4.4%, respectively. On the other hand, it respectively decreased total feed intake by 1.0% and 1.8% and significantly improved the average feed conversion ratio and efficiency of energy utilization throughout the whole experimental period compared to the control. Moreover, kaolin addition had no adverse effect on the serum lipid profile and improved antioxidative activity through reduced nitric oxide and lipid peroxidase (malondialdehyde) concentrations or increased the activities of Glutathione peroxide, Catalase, and Superoxide dismutases in serum or liver tissues. Lysosomal and bactericidal activities were increased with kaolin addition at both levels in the broiler chickens’ diets. The present results suggested that the broiler chickens’ fed with kaolin-enriched diets improved growth, antioxidant activity, bone mineralization, and immune response.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4300-4300
Author(s):  
Johann-Christoph Jann ◽  
Maximilian Mossner ◽  
Florian Nolte ◽  
Tobias Boch ◽  
Verena Nowak ◽  
...  

Abstract Introduction: Myelodysplastic Syndrome (MDS) can occur in young people but it is mainly a disease of the elderly with a dramatic increase of incidence in the decades above 60 years. Accordingly, the factor age may be an important gateway to the understanding of the molecular pathogenesis of MDS. Insights into the molecular changes of aging hematopoiesis in healthy organisms have found molecular changes, which often parallel the observations in MDS such as increase of clonality with age, change of epigenetic profiles, skewed lineage commitment toward the myeloid compartment and reduced regenerative capacity after stress. The development of MDS is often suggestive of an accelerated extrapolation of molecular changes, which also occur in normal aging hematopoiesis. Beyond this, increasing evidence is suggesting that MDS hematopoiesis is highly dependent on support of the bone marrow (BM) stroma, which has been shown to display aberrant transcriptomic profiles as compared to healthy BM stroma. To this end, we aimed to test the hypothesis whether the emergence of MDS may be associated with a continuity of molecular changes in BM stroma cells during aging. Therefore, we performed explorative RNA sequencing in a set of MSCs collected from healthy young, healthy old and patients with MDS with a highly standardized pre-analytical work-up algorithm. Methods: We collected BM samples from voluntary healthy young adults (age = 24 - 25 years, female n=3, male n=3), healthy old adults (age 66 - 79 years, female n=3, male n=3) and patients with very low - intermediate risk MDS (age 51 - 87 years, female n=3, male n=3). After isolation of BM mononuclear cells by Ficoll gradient centrifugation, 5x106 mononuclear BM cells were seeded into 25cm² flasks and cultured using StemMACS human MSC Expansion Media (Miltenyi Biotec) with weekly media exchange to select for MSCs. These were expanded and harvested in passage 2. Absence of residual hematopoietic cells was controlled by FACS with anti CD45, CD31, and CD146. Whole transcriptome RNA-sequencing on all samples was carried out from 150ng of high quality RNA using the TruSeq stranded total RNA protocol and 100bp paired end sequencing (Illumina). The bio-informatical pipeline consisted of mapping using hisat2 and cufflinks for calculation of differentially expressed genes. Results: RNA-sequencing generated a mean of 94 million reads per sample. Between the groups "healthy young" and "healthy old" 331 differentially regulated genes were identified. Between "healthy old" and "MDS" 514 genes were differentially regulated (fold change > 1.5, false discovery rate, FDR < 0.05). Among these, 197 genes were differently expressed between all three groups. With these parameters, a total of 17 genes showed a continuous and significant increase of expression from healthy young over healthy old toward MDS. Among these were Kit ligand (KITLG) but also a cluster of membrane based cell adhesion molecules such as Cadherin-6 (CDH6), Laminin Subunit Alpha 2 (LAMA2) and Laminin Subunit Gamma 2 (LAMC2) and others. Conversely, 5 genes showed a continuous and significant decrease of expression from healthy young over healthy old toward MDS, among these Leukocyte-specific protein 1 (LSP1), a gene implicated in regulation of T-cell migration. Gene set enrichment analysis revealed that MDS MSCs exhibited a significant depletion of genes involved in early adipogenic differentiation and enrichment of gene sets associated with extracellular matrix remodeling (FDR < 0.05, normalized enrichment score > 1.7). Although cells were cultured under normoxic conditions, MDS-MSCs displayed marked intrinsic feature of hypoxia. Conclusion: By integrating transcriptomic data from BM stroma cells from healthy individuals during aging and comparison to BM stroma cells from MDS patients we have identified gene sets that are significantly differentially expressed per continuitatem. On the background of the hypothesis that molecular changes in the microenvironment of MDS are an exacerbation of changes also taking place during normal aging in the bone marrow, these genes, which are accumulated in the context of extracellular matrix and cell adhesion are promising candidates to further elucidate a BM stroma based pathogenesis of MDS. Disclosures No relevant conflicts of interest to declare.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rining Zhu ◽  
Hexiang Jiang ◽  
Jun Wang ◽  
Chuntong Bao ◽  
Haiyao Liu ◽  
...  

AbstractPorcine infectious pleuropneumonia is characterized by a high-rate of carriage and mixed infection with other pathogens. The host immune response induced by Actinobacillus pleuropneumoniae (APP) is the basis for elucidating pathogenesis and controlling disease. However, there is currently no comprehensive and dynamic data characterising the host immune response. In this study, piglets were infected with APP and differentially expressed proteins of bronchoalveolar lavage fluid (BALF) and peripheral serum were identified by iTRAQ-LC-MS/MS, and differentially expressed genes of peripheral blood mononuclear cells (PBMC) by RNA-seq. The results of the integrated analysis of serum, BALF and PBMC showed significant metabolism and local immune responses in BALF, the general immune response in PBMC mainly involves cytokines, while that in serum mainly involves biosynthesis, phagosome, and complement and coagulation cascades. Furthermore, immune responses in PBMCs and serum were rapid and maintained compared to the lung where metabolism and cell adhesion activities were enriched. Some innate immunity pathways of the cellular response to ROS, neutrophil mediated immunity, granulocyte activation and leukocyte cell-cell adhesion were identified as central points, connecting multiple signaling pathways to form an integrated large network. At 24 h post-infection, 14 molecules were up regulated in BALF, 10 of which were shared with PBMC, but at 120 h, 20 down-regulated molecules were identified in BALF, 11 of them still up- regulated in PBMC. We conclude that, the immune response in the lung is different from that in blood, but there is a similarity in response in PBMC and serum.


2016 ◽  
Vol 6 (1) ◽  
pp. 846-852
Author(s):  
Olugbenga Adeniran Ogunwole ◽  
B. C Majekodunmi ◽  
R. A Faboyede ◽  
D. Ogunsiji

Effects of supplemental dietary lysine and methionine in a Groundnut Cake (GNC) based diets on meat and bone characteristics of broiler chickens were investigated. In a completely randomized design, a total of 168 one - day – old Arbor acre broiler chicks were randomly allocated to seven dietary treatments each in triplicate of eight birds per replicate. The Seven starter and finishers’ diets were: GNC based diets without any amino acid (lysine or methionine) supplementation (T1); GNC diet + 0.2% lysine (T2); GNC diet + 0.4% lysine (T3); GNC diet + 0.2% methionine (T4); GNC diet + 0.4% methionine (T5); GNC diet + 0.2 lysine and 0.2% methionine (T6) and GNC diet + 0.4% lysine and 0.4% methionine (T7). Experimental diets and water were offered to birds ad libitum in an experiment lasting six-week. At day 42, two birds per replicate were slaughtered, meat and bone characteristics determined. There were significant variations (P<0.05) in the crude protein (%) and ether extract (%), pH1 and pH2 of meat. Thiobarbituric acid reactive substances composition of meat at days 0, 5, and 10 were similar (P<0.05) and were not affected by dietary amino acid supplementation. Tibiotarsal index (mg/mm) of bone (22.10, 27.25, 33.35, 31.40, 28.70, 31.45 and 29.75 for broilers on T1, T2, T3, T4, T5, T6 and T7, respectively) were increased significantly (P<0.05) by amino acid supplementation. Significantly differences (P<0.05) were observed in the calcium, phosphorus and potassium (%) contents of broilers’ bone across treatments. Supplemental lysine and both lysine and methionine improved meat quality and bone development of broiler chickens in this study.


2014 ◽  
Vol 3 (1) ◽  
pp. 150-157
Author(s):  
Khalid M. Gaafar

The research was conducted to study the effect of feeding broiler chickens on diets containing isomaltooligosaccharides on the growth performance, carcass traits and immune response. 90-one day old broiler chicks were used according to completely randomized two treatment groups and one control, 30 birds each. Birds fed ad-libitum on basal starter and grower-finisher diets for 35 day. Diets of treatment`s groups contained 0.5 g/Kg and 1 g/Kg of Isomaltooligosaccharides, while the control group fed on the basal diets without Isomaltooligosaccharides supplementation. Dietary supplementation of broiler chickens with Isomaltooligosaccharides improved body weight, feed conversion, carcass traits, two lymphoid organs weight and log antibody titer against avian flu vaccine. Most of the highest values were for birds fed low levels of Isomaltooligosaccharides. Feed intake decreases as Isomaltooligosaccharides level increases. Dietary supplementation with Isomaltooligosaccharides did not affect the lipids profile (triglycerides, total cholesterol, LDL and HDL), however the blood VLDL levels decreased with increased levels of Malondialdehyde and Glutathione reductase. Collectively, Dietary supplementation of broiler chickens with 0.5 g/Kg diet of Isomaltooligosaccharides improved growth performance, carcass traits and immune status.


2021 ◽  
Vol 22 (14) ◽  
pp. 7624
Author(s):  
Mohammad Saeed ◽  
Alejandro Ibáñez-Costa ◽  
Alejandra María Patiño-Trives ◽  
Laura Muñoz-Barrera ◽  
Eduardo Collantes Estévez ◽  
...  

Objectives: This study employed genetic and functional analyses using OASIS meta-analysis of multiple existing GWAS and gene-expression datasets to identify novel SLE genes. Methods: Four hundred and ten genes were mapped using SNIPPER to 30 SLE GWAS loci and investigated for expression in three SLE GEO-datasets and the Cordoba GSE50395-dataset. Blood eQTL for significant SNPs in SLE loci and STRING for functional pathways of differentially expressed genes were used. Confirmatory qPCR on SLE monocytes was performed. The entire 12p11 locus was investigated for genetic association using two additional GWAS. Expression of 150 genes at this locus was assessed. Based on this significance, qPCRs for DNM1L and KRAS were performed. Results: Fifty genes were differentially expressed in at least two SLE GEO-datasets, with all probes directionally aligned. DDX11, an RNA helicase involved in genome stability, was downregulated in both GEO and Cordoba datasets. The most significant SNP, rs3741869 in OASIS locus 12p11.21, containing DDX11, was a cis-eQTL regulating DDX11 expression. DDX11 was found repressed. The entire 12p11 locus showed three association peaks. Gene expression in GEO datasets identified DNM1L and KRAS, besides DDX11. Confirmatory qPCR validated DNM1L as an SLE susceptibility gene. DDX11, DNM1L and KRAS interact with each other and multiple known SLE genes including STAT1/STAT4 and major components of IFN-dependent gene expression, and are responsible for signal transduction of cytokines, hormones, and growth-factors, deregulation of which is involved in SLE-development. Conclusion: A genomic convergence approach with OASIS analysis of multiple GWAS and expression datasets identified DDX11 and DNM1L as novel SLE-genes, the expression of which is altered in monocytes from SLE patients. This study lays the foundation for understanding the pathogenic involvement of DDX11 and DNM1L in SLE by identifying them using a systems-biology approach, while the 12p11 locus harboring these genes was previously missed by four independent GWAS.


Sign in / Sign up

Export Citation Format

Share Document