scholarly journals Comparative analysis of gene expression profiles in differentiated subcutaneous adipocytes between Jiaxing Black and Large White pigs

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Dawei Zhang ◽  
Wenjing Wu ◽  
Xin Huang ◽  
Ke Xu ◽  
Cheng Zheng ◽  
...  

Abstract Background Chinese domestic pig breeds are reputed for pork quality, but their low ratio of lean-to-fat carcass weight decreases production efficiency. A better understanding of the genetic regulation network of subcutaneous fat tissue is necessary for the rational selection of Chinese domestic pig breeds. In the present study, subcutaneous adipocytes were isolated from Jiaxing Black pigs a Chinese indigenous pig breed with redundant subcutaneous fat deposition and Large White pigs a lean-type pig breed with relatively low subcutaneous fat deposition. The expression profiles of mRNAs and lncRNAs were compared by RNA-seq analysis to identify biomarkers correlated with the differences of subcutaneous fat deposition between the two breeds. Results A total of 1058 differentially expressed genes and 221 differentially expressed lncRNAs were identified in subcutaneous adipocytes between Jiaxing Black and Large White pigs, which included 275 up-regulated mRNAs, 783 down-regulated mRNAs, 118 up-regulated lncRNAs and 103 down-regulated lncRNAs. Gene Ontology and KEGG pathway enrichment analyses revealed that the differentially expressed genes and differentially expressed lncRNAs were mainly involved in the immune response, cell fate determination, PI3K-Akt signaling pathway and MAPK signaling pathway, which are known to be related to adipogenesis and lipid metabolism. The expression levels of differentially expressed genes and differentially expressed lncRNAs according to the RNA-seq data were verified by quantitative PCR, which showed 81.8% consistency. The differences in MAPK pathway activity between Jiaxing Black and Large White pigs was confirmed by western blot analysis, which revealed elevated p38 phosphorylation in Jiaxing Black pigs. Conclusions This study offers a detailed characterization of mRNAs and lncRNAs in fat- and lean-type pig breeds. The activity of the MAPK signaling pathway was found to be associated with subcutaneous adipogenesis. These results provide new targets for further investigation of the molecular mechanisms regulating subcutaneous fat deposition in pigs.

2020 ◽  
Author(s):  
Dawei Zhang ◽  
Wenjing Wu ◽  
Xin Huang ◽  
Ke Xu ◽  
Cheng Zheng ◽  
...  

Abstract Background: Chinese domestic pig breeds are reputed for pork quality, but their low ratio of lean-to-fat carcass weight decreases production efficiency. A better understanding of the genetic regulation network of SC fat tissue is necessary for the rational selection of Chinese domestic pig breeds. In the present study, SC adipocytes were isolated from Jiaxing Black pigs (a Chinese indigenous pig breed with redundant SC fat deposition) and Large White pigs (a lean-type pig breed with relatively low SC fat deposition) and the expression profiles of mRNAs and lncRNAs were compared by RNA-seq analysis to identify biomarkers correlated with the differences of SC fat deposition between the two breeds.Results: A total of 3,371 differentially expressed genes (DEGs) and 1,182 differentially expressed lncRNAs (DELs) were identified in SC adipocytes between Jiaxing Black (JX) and Large White (LW) pigs, which included 797 upregulated mRNAs, 2,574 downregulated mRNAs, 461 upregulated lncRNAs and 721 downregulated lncRNAs. Gene Ontology and KEGG pathway analyses revealed that the DEGs and DELs were mainly involved in the immune response, cell fate determination, PI3K-Akt signaling pathway and MAPK signaling pathway, which are known to be related to adipogenesis and lipid metabolism. The expression levels of DEGs and DELs according to the RNA-seq data were verified by quantitative PCR, which showed 81.8% consistency. The differences in MAPK pathway activity between JX and LW pigs was confirmed by western blot analysis, with <100-fold elevated p38 phosphorylation in JX pigs.Conclusions: This study offers a detailed characterization of mRNAs and lncRNAs in fat- and lean-type pig breeds. The activity of the MAPK signaling pathway was found to be associated with subcutaneous adipogenesis. These results greatly enhance our understanding of the molecular mechanisms regulating SC fat deposition in pigs.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kai Xing ◽  
Kejun Wang ◽  
Hong Ao ◽  
Shaokang Chen ◽  
Zhen Tan ◽  
...  

Abstract Fatness traits are important in pigs because of their implications for fattening efficiency, meat quality, reproductive performance and immunity. Songliao black pigs and Landrace pigs show important differences in production and meat quality traits, including fatness and muscle growth. Therefore, we used a high-throughput massively parallel RNA-seq approach to identify genes differentially expressed in backfat tissue between these two breeds (six pigs in each). An average of 37.87 million reads were obtained from the 12 samples. After statistical analysis of gene expression data by edgeR, a total of 877 differentially expressed genes were detected between the two pig breeds, 205 with higher expression and 672 with lower expression in Songliao pigs. Candidate genes (LCN2, CES3, DGKB, OLR1, LEP, PGM1, PCK1, ACACB, FADS1, FADS2, MOGAT2, SREBF1, PPARGC1B) with known effects on fatness traits were included among the DEGs. A total of 1071 lncRNAs were identified, and 85 of these lncRNAs were differentially expressed, including 53 up-regulated and 32 down-regulated lncRNAs, respectively. The differentially expressed genes and lncRNAs involved in glucagon signaling pathway, glycolysis/gluconeogenesis, insulin signaling pathway, MAPK signaling pathway and so on. Integrated analysis potential trans-regulating or cis-regulating relation between DEGs and DE lncRNAs, suggested lncRNA MSTRG.2479.1 might regulate the expressed level of VLDLR affecting porcine fat metabolism. These results provide a number of candidate genes and lncRNAs potentially involved in porcine fat deposition and provide a basis for future research on the molecular mechanisms underlying in fat deposition.


2018 ◽  
Vol 50 (6) ◽  
pp. 2406-2422 ◽  
Author(s):  
Wanlong Huang ◽  
Xiuxiu Zhang ◽  
Ai Li ◽  
Lingli Xie ◽  
Xiangyang Miao

Background/Aims: Long non-coding RNAs (lncRNAs) can regulate adipogenesis and lipid accumulation. Intramuscular fat deposition appears to vary in different pig breeds, and the regulation mechanism has not yet been fully elucidated at molecular level. Moreover, little is known about the function and profile of lncRNAs in intramuscular fat deposition and metabolism in pig. The aim of this study was thus to explore the regulatory functions of lncRNAs in intramuscular fat deposition. Methods: In this study, Laiwu (LW) pig and Large White (LY) pig with significant difference in fat deposition were selected for use. RNA-seq technology and bioinformatics methods were used to comparatively analyze the gene expression profiles of intramuscular fat between LW and LY pigs to identify key mRNAs and lncRNAs associated with lipid metabolism and adipogenesis. Real-time fluorescence-based quantitative PCR was applied to verify the expression level of the differentially expressed mRNAs and lncRNAs. Results: A total of 513 mRNAs and 55 lncRNAs were differentially expressed between two pig breeds. By co-expression network construction as well as cis- and trans-regulated target gene analysis, 31 key lncRNAs were identified. Gene Ontology and KEGG pathway analyses revealed that differentially expressed genes and lncRNAs were mainly involved in the biological processes and pathways related to adipogenesis and lipid metabolism. Conclusion: XLOC_046142, XLOC_004398 and XLOC_015408 may target MAPKAPK2, NR1D2 and AKR1C4, respectively, and play critical regulatory roles in intramuscular adipogenesis and lipid accumulation in pig. XLOC_064871 and XLOC_011001 may play a role in lipid metabolism-related disease via regulating TRIB3 and BRCA1. This study provides a valuable resource for lncRNA study and improves our understanding of the biological roles of lipid metabolism- related genes and molecular mechanism of intramuscular fat metabolism and deposition.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 244 ◽  
Author(s):  
Antonio Victor Campos Coelho ◽  
Rossella Gratton ◽  
João Paulo Britto de Melo ◽  
José Leandro Andrade-Santos ◽  
Rafael Lima Guimarães ◽  
...  

HIV-1 infection elicits a complex dynamic of the expression various host genes. High throughput sequencing added an expressive amount of information regarding HIV-1 infections and pathogenesis. RNA sequencing (RNA-Seq) is currently the tool of choice to investigate gene expression in a several range of experimental setting. This study aims at performing a meta-analysis of RNA-Seq expression profiles in samples of HIV-1 infected CD4+ T cells compared to uninfected cells to assess consistently differentially expressed genes in the context of HIV-1 infection. We selected two studies (22 samples: 15 experimentally infected and 7 mock-infected). We found 208 differentially expressed genes in infected cells when compared to uninfected/mock-infected cells. This result had moderate overlap when compared to previous studies of HIV-1 infection transcriptomics, but we identified 64 genes already known to interact with HIV-1 according to the HIV-1 Human Interaction Database. A gene ontology (GO) analysis revealed enrichment of several pathways involved in immune response, cell adhesion, cell migration, inflammation, apoptosis, Wnt, Notch and ERK/MAPK signaling.


2020 ◽  
Author(s):  
Xue Fan ◽  
Meng Li ◽  
Min Xiao ◽  
Cong Liu ◽  
Mingguo Xu

Abstract Background: Kawasaki disease (KD) leads to coronary artery damage and the etiology of KD is unknown. The present study was designed to explore the differentially expressed genes (DEGs) in KD serum-induced human coronary artery endothelial cells (HCAECs) by RNA-sequence (RNA-seq). Methods: HCAECs were stimulated with serum (15% (v/v)), which were collected from 20 healthy children and 20 KD patients, for 24 hours. DEGs were then detected and analyzed by RNA-seq and bioinformatics analysis. Results: The expression of SMAD1, SMAD6, CD34, CXCL1, PITX2, and APLN was validated by qPCR. 102 genes, 59 up-regulated and 43 down-regulated genes, were significantly differentially expressed in KD groups. GO enrichment analysis showed that DEGs were enriched in cellular response to cytokines, cytokine-mediated signaling pathway, and regulation of immune cells migration and chemotaxis. KEGG signaling pathway analysis showed that DEGs were mainly involved in cytokine−cytokine receptor interaction, chemokine signaling pathway, and TGF−β signaling pathway. Besides, the mRNA expression levels of SMAD1, SMAD6, CD34, CXCL1, and APLN in the KD group were significantly up-regulated compared with the normal group, whilePITX2 was significantly down-regulated. Conclusion: 102 DEGs in KD serum-induced HCAECs were identified, and six new targets were proposed as potential indicators of KD.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1565
Author(s):  
Zhiyun Hao ◽  
Yuzhu Luo ◽  
Jiqing Wang ◽  
Jiang Hu ◽  
Xiu Liu ◽  
...  

Long non-coding RNAs (lncRNAs) are a kind of non-coding RNA with >200 nucleotides in length. Some lncRNAs have been proven to have clear regulatory functions in many biological processes of mammals. However, there have been no reports on the roles of lncRNAs in ovine mammary gland tissues. In the study, the expression profiles of lncRNAs were studied using RNA-Seq in mammary gland tissues from lactating Small-Tailed Han (STH) ewes and Gansu Alpine Merino (GAM) ewes with different milk yield and ingredients. A total of 1894 lncRNAs were found to be expressed. Compared with the GAM ewes, the expression levels of 31 lncRNAs were significantly up-regulated in the mammary gland tissues of STH ewes, while 37 lncRNAs were remarkably down-regulated. Gene Ontogeny (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the target genes of differentially expressed lncRNAs were enriched in the development and proliferation of mammary epithelial cells, morphogenesis of mammary gland, ErbB signaling pathway, and Wnt signaling pathway. Some miRNA sponges of differentially expressed lncRNAs, reported to be associated with lactation and mammary gland morphogenesis, were found in a lncRNA-miRNA network. This study reveals comprehensive lncRNAs expression profiles in ovine mammary gland tissues, thereby providing a further understanding of the functions of lncRNAs in the lactation and mammary gland development of sheep.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhaoqin Wang ◽  
Yan Huang ◽  
Di Wang ◽  
Rumeng Wang ◽  
Kunshan Li ◽  
...  

Acupuncture and moxibustion have definite clinical effects on treating ulcerative colitis (UC), but their mechanism is still unclear. To investigate the molecular mechanisms, we applied herb-partitioned moxibustion or electroacupuncture at the Tianshu (ST25) points on UC rats and used RNA sequencing to identify molecular consequences. Male Sprague Dawley (SD) rats were divided into 6 groups randomly: the normal control (NC) group, the control + herb-partitioned moxibustion (NCHM) group, the control + electroacupuncture (NCEA) group, the model (UC) group, the model + herb-partitioned moxibustion (UCHM) group, and the model + electroacupuncture (UCEA) group. Compared to the UC group, HE staining in the UCHM group and UCEA group indicated that colitis was relieved, the histopathological score and MPO were both significantly reduced, and the serum hs-CRP concentration was decreased significantly. The results of RNA-seq suggested that, compared to the NC group, 206 upregulated genes and 167 downregulated genes were identified in colon tissues from the UC group; compared to the UC group, the expression levels of some genes were both affected in the UCHM group and the UCEA group (684 differentially expressed genes were identified in the UCHM group, and 1182 differentially expressed genes were identified in the UCEA group). KEGG signal pathway analysis indicated that the differentially expressed genes in the UCHM group were associated with the JAK-STAT signaling pathway and cell adhesion molecule (CAM); the differentially expressed genes in the UCEA group were associated with the NF-κB signaling pathway, the toll-like receptor signaling pathways, the PI3K-Akt signaling pathway, the MAPK signaling pathway, and the Wnt signaling pathway. This is the first study to reveal the gene expression characteristics of the anti-inflammatory effect of UC rats from the perspective of acupuncture and moxibustion control, which provide a clue for further investigation into the molecular mechanisms of UC treatment by acupuncture and moxibustion.


2020 ◽  
Author(s):  
Yuanxiang Lu ◽  
Wensen Li ◽  
Ge Liu ◽  
Erwei Xiao ◽  
Senmao Mu ◽  
...  

Abstract Background: Duodenal papilla carcinoma (DPC) is a rare malignancy of the gastrointestinal tract with high recurrence rate, and the pathogenesis of this highly malignant neoplasm is yet to be fully elucidated. This study aims to identify key genes to further understand the biology and pathogenesis underlying the molecular alterations driving DPC, which could be potential diagnostic or therapeutic targets.Methods: Tumor samples of three DPC patients were collected and integrating RNA-seq analysis of tumor tissues and matched normal tissues were performed to discover differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were carried out to understand the potential bio-functions of the DPC differentially expressed genes (DEGs) and protein–protein interaction (PPI) network was constructed for functional modules analysis and dentification of hub genes. Results: A total of 110 DEGs were identified from our RNA-Seq data, GO and KEGG analyses showed that the DEGs were mainly enriched in multiple cancer-related functions and pathways, such as cell proliferation, IL-17signaling pathway, Jak-STAT signaling pathway, PPAR signaling pathway. The PPI network screened out six hub genes including IL-6, LEP, LCN2, CCND1, FABP4 and MMP1, which were identified as core genes in the network and potential therapeutic targets of DPC. Discussion: The current study provides new insight into the exploration of DPC pathogenesis and the screened hub genes may serve as potential diagnostic indicator and novel therapeutic target.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Ethan Winkler ◽  
David McCoy ◽  
Zhengda Sun ◽  
Daniel Cooke

Introduction: To-date, there is no accurate means to identify which bAVMs will bleed and treatment remains controversial. Hypothesis: We developed an endovascular biopsy (EB) technique to isolate endothelial cells (ECs) from bAVMs in patients. We hypothesized this technique would allow RNA-seq analysis of relevant bAVM-related molecular pathways. Methods: EB was performed during angiography for bAVM patients undergoing resection. Cells were obtained from a bAVM juxta-nidal feeding artery and iliac artery (control) with a detachable coil and 0.035 inch wire. ECs were isolated with fluorescence assisted cell sorting (FACS). bAVM tissue was obtained from surgery, dissociated and underwent FACS sorting. Total RNA extraction and library preparation was performed, and samples sequenced on an Illumina HiSeq 4000 sequencer. Reads were aligned with Kallisto, and differentially expressed genes identified between bAVM and control with Sleuth using likelihood ratio tests. Correlations between EB and resected tissues were calculated with Pearson correlation coefficients. Principle Component Analysis (PCA) was used to assess for cell clustering. Results: EB was performed in 4 patients without complication or adverse event. PCA showed separation of bAVM ECs from controls. Analysis demonstrated 106 differentially expressed genes (FDR p ≤ 0.05). KEGG pathway analysis on these genes revealed enrichment in bAVM-related RAS/MAPK cell signaling functionally related to trophic factor, chemokine and gap junction signaling pathways. Detected genes were strongly correlated between EB and ECs isolated from resected tissues (R 2 = 0.77 for artery, nidus, and vein tissue). Results shown in Figure 1 . Conclusions: EB is a safe technique to permit non-invasive sequencing of bAVMs. These results implicate dysregulated KRAS/MAPK signaling in adult bAVMs. Whether this technique will allow for better natural history prediction or targeted medical therapies requires future study.


Sign in / Sign up

Export Citation Format

Share Document