scholarly journals Genome-wide analysis of MYB transcription factors of Vaccinium corymbosum and their positive responses to drought stress

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Aibin Wang ◽  
Kehao Liang ◽  
Shiwen Yang ◽  
Yibo Cao ◽  
Lei Wang ◽  
...  

Abstract Background Blueberry (Vaccinium corymbosum L.) is an important species with a high content of flavonoids in fruits. As a perennial shrub, blueberry is characterized by shallow-rooted property and susceptible to drought stress. MYB transcription factor was reported to be widely involved in plant response to abiotic stresses, however, the role of MYB family in blueberry responding to drought stress remains elusive. Results In this study, we conducted a comprehensive analysis of VcMYBs in blueberry based on the genome data under drought stress, including phylogenetic relationship, identification of differentially expressed genes (DEGs), expression profiling, conserved motifs, expression correlation and protein-protein interaction prediction, etc. The results showed that 229 non-redundant MYB sequences were identified in the blueberry genome, and divided into 23 subgroups. A total of 102 MYB DEGs with a significant response to drought stress were identified, of which 72 in leaves and 69 in roots, and 8 differential expression genes with a > 20-fold change in the level of expression. 17 DEGs had a higher expression correlation with other MYB members. The interaction partners of the key VcMYB proteins were predicted by STRING analysis and in combination with physiological and morphological observation. 10 key VcMYB genes such as VcMYB8, VcMYB102 and VcMYB228 were predicted to be probably involved in reactive oxygen species (ROS) pathway, and 7 key VcMYB genes (VcMYB41, VcMYB88 and VcMYB100, etc..) probably participated in leaf regulation under drought treatment. Conclusions Our studies provide a new understanding of the regulation mechanism of VcMYB family in blueberry response to drought stress, and lay fundamental support for future studies on blueberry grown in regions with limited water supply for this crop.

2021 ◽  
Vol 15 (8) ◽  
pp. 927-936 ◽  
Author(s):  
Yan Peng ◽  
Yuewu Liu ◽  
Xinbo Chen

Background: Drought is one of the most damaging and widespread abiotic stresses that can severely limit the rice production. MicroRNAs (miRNAs) act as a promising tool for improving the drought tolerance of rice and have become a hot spot in recent years. Objective: In order to further extend the understanding of miRNAs, the functions of miRNAs in rice under drought stress are analyzed by bioinformatics. Method: In this study, we integrated miRNAs and genes transcriptome data of rice under the drought stress. Some bioinformatics methods were used to reveal the functions of miRNAs in rice under drought stress. These methods included target genes identification, differentially expressed miRNAs screening, enrichment analysis of DEGs, network constructions for miRNA-target and target-target proteins interaction. Results: (1) A total of 229 miRNAs with differential expression in rice under the drought stress, corresponding to 73 rice miRNAs families, were identified. (2) 1035 differentially expressed genes (DEGs) were identified, which included 357 up-regulated genes, 542 down-regulated genes and 136 up/down-regulated genes. (3) The network of regulatory relationships between 73 rice miRNAs families and 1035 DEGs was constructed. (4) 25 UP_KEYWORDS terms of DEGs, 125 GO terms and 7 pathways were obtained. (5) The protein-protein interaction network of 1035 DEGs was constructed. Conclusion: (1) MiRNA-regulated targets in rice might mainly involve in a series of basic biological processes and pathways under drought conditions. (2) MiRNAs in rice might play critical roles in Lignin degradation and ABA biosynthesis. (3) MiRNAs in rice might play an important role in drought signal perceiving and transduction.


2021 ◽  
Author(s):  
Baozhu Li ◽  
Ruonan Fan ◽  
Guiling Sun ◽  
Ting Sun ◽  
Yanting Fan ◽  
...  

Abstract Background and aims As drought threatens the yield and quality of maize (Zea mays L.), it is important to dissect the molecular basis of maize drought tolerance. Flavonoids, participate in the scavenging of oxygen free radicals and alleviate stress-induced oxidative damages. This study aims to dissect the function of flavonoids in the improvement of maize drought tolerance. Methods Using far-infrared imaging screening, we previously isolated a drought overly insensitivity (doi) mutant from an ethyl methanesulfonate (EMS)-mutagenized maize library and designated it as doi57. In this study, we performed a physiological characterization and transcriptome profiling of doi57 in comparison to corresponding wild-type B73 under drought stress. Results Under drought stress, doi57 seedlings displayed lower leaf-surface temperature (LST), faster water loss, and better performance in growth than B73. Transcriptome analysis reveals that key genes involved in flavonoid biosynthesis are enriched among differentially expressed genes in doi57. In line with these results, more flavonols and less hydrogen peroxide (H2O2) were accumulated in guard cells of doi57 than in those of B73 with the decrease of soil water content (SWC). Moreover, the capacity determined from doi57 seedling extracts to scavenge oxygen free radicals was more effective than that of B73 under the drought treatment. Additionally, doi57 seedlings had higher photosynthetic rates, stomatal conductance, transpiration rates, and water use efficiency than B73 exposed to drought stress, resulting in high biomass and greater root/shoot ratios in doi57 mutant plants. Conclusion Flavonoids may facilitate maize seedling drought tolerance by lowering drought-induced oxidative damage as well regulating stomatal movement.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Arun Kumaran Anguraj Vadivel ◽  
Tim McDowell ◽  
Justin B. Renaud ◽  
Sangeeta Dhaubhadel

AbstractGmMYB176 is an R1 MYB transcription factor that regulates multiple genes in the isoflavonoid biosynthetic pathway, thereby affecting their levels in soybean roots. While GmMYB176 is important for isoflavonoid synthesis, it is not sufficient for the function and requires additional cofactor(s). The aim of this study was to identify the GmMYB176 interactome for the regulation of isoflavonoid biosynthesis in soybean. Here, we demonstrate that a bZIP transcription factor GmbZIP5 co-immunoprecipitates with GmMYB176 and shows protein–protein interaction in planta. RNAi silencing of GmbZIP5 reduced the isoflavonoid level in soybean hairy roots. Furthermore, co-overexpression of GmMYB176 and GmbZIP5 enhanced the level of multiple isoflavonoid phytoallexins including glyceollin, isowighteone and a unique O-methylhydroxy isoflavone in soybean hairy roots. These findings could be utilized to develop biotechnological strategies to manipulate the metabolite levels either to enhance plant defense mechanisms or for human health benefits in soybean or other economically important crops.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Z. Y. Su ◽  
J. J. Powell ◽  
S. Gao ◽  
M. Zhou ◽  
C. Liu

Abstract Background Fusarium crown rot (FCR) is a chronic disease in cereal production worldwide. The impact of this disease is highly environmentally dependant and significant yield losses occur mainly in drought-affected crops. Results In the study reported here, we evaluated possible relationships between genes conferring FCR resistance and drought tolerance using two approaches. The first approach studied FCR induced differentially expressed genes (DEGs) targeting two barley and one wheat loci against a panel of genes curated from the literature based on known functions in drought tolerance. Of the 149 curated genes, 61.0% were responsive to FCR infection across the three loci. The second approach was a comparison of the global DEGs induced by FCR infection with the global transcriptomic responses under drought in wheat. This analysis found that approximately 48.0% of the DEGs detected one week following drought treatment and 74.4% of the DEGs detected three weeks following drought treatment were also differentially expressed between the susceptible and resistant isolines under FCR infection at one or more timepoints. As for the results from the first approach, the vast majority of common DEGs were downregulated under drought and expressed more highly in the resistant isoline than the sensitive isoline under FCR infection. Conclusions Results from this study suggest that the resistant isoline in wheat was experiencing less drought stress, which could contribute to the stronger defence response than the sensitive isoline. However, most of the genes induced by drought stress in barley were more highly expressed in the susceptible isolines than the resistant isolines under infection, indicating that genes conferring drought tolerance and FCR resistance may interact differently between these two crop species. Nevertheless, the strong relationship between FCR resistance and drought responsiveness provides further evidence indicating the possibility to enhance FCR resistance by manipulating genes conferring drought tolerance.


Proteomes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 3 ◽  
Author(s):  
Zhujia Ye ◽  
Sasikiran Reddy Sangireddy ◽  
Chih-Li Yu ◽  
Dafeng Hui ◽  
Kevin Howe ◽  
...  

Switchgrass plants were grown in a Sandwich tube system to induce gradual drought stress by withholding watering. After 29 days, the leaf photosynthetic rate decreased significantly, compared to the control plants which were watered regularly. The drought-treated plants recovered to the same leaf water content after three days of re-watering. The root tip (1cm basal fragment, designated as RT1 hereafter) and the elongation/maturation zone (the next upper 1 cm tissue, designated as RT2 hereafter) tissues were collected at the 29th day of drought stress treatment, (named SDT for severe drought treated), after one (D1W) and three days (D3W) of re-watering. The tandem mass tags mass spectrometry-based quantitative proteomics analysis was performed to identify the proteomes, and drought-induced differentially accumulated proteins (DAPs). From RT1 tissues, 6156, 7687, and 7699 proteins were quantified, and 296, 535, and 384 DAPs were identified in the SDT, D1W, and D3W samples, respectively. From RT2 tissues, 7382, 7255, and 6883 proteins were quantified, and 393, 587, and 321 proteins DAPs were identified in the SDT, D1W, and D3W samples. Between RT1 and RT2 tissues, very few DAPs overlapped at SDT, but the number of such proteins increased during the recovery phase. A large number of hydrophilic proteins and stress-responsive proteins were induced during SDT and remained at a higher level during the recovery stages. A large number of DAPs in RT1 tissues maintained the same expression pattern throughout drought treatment and the recovery phases. The DAPs in RT1 tissues were classified in cell proliferation, mitotic cell division, and chromatin modification, and those in RT2 were placed in cell wall remodeling and cell expansion processes. This study provided information pertaining to root zone-specific proteome changes during drought and recover phases, which will allow us to select proteins (genes) as better defined targets for developing drought tolerant plants. The mass spectrometry proteomics data are available via ProteomeXchange with identifier PXD017441.


2017 ◽  
Vol 68 (11) ◽  
pp. 2991-3005 ◽  
Author(s):  
Mingzhu Yin ◽  
Yanping Wang ◽  
Lihua Zhang ◽  
Jinzhu Li ◽  
Wenli Quan ◽  
...  

Abstract Environmental stress poses a global threat to plant growth and reproduction, especially drought stress. Zinc finger proteins comprise a family of transcription factors that play essential roles in response to various abiotic stresses. Here, we found that ZAT18 (At3g53600), a nuclear C2H2 zinc finger protein, was transcriptionally induced by dehydration stress. Overexpression (OE) of ZAT18 in Arabidopsis improved drought tolerance while mutation of ZAT18 resulted in decreased plant tolerance to drought stress. ZAT18 was preferentially expressed in stems, siliques, and vegetative rosette leaves. Subcellular location results revealed that ZAT18 protein was predominantly localized in the nucleus. ZAT18 OE plants exhibited less leaf water loss, lower content of reactive oxygen species (ROS), higher leaf water content, and higher antioxidant enzyme activities after drought treatment when compared with the wild type (WT). RNA sequencing analysis showed that 423 and 561 genes were transcriptionally modulated by the ZAT18 transgene before and after drought treatment, respectively. Pathway enrichment analysis indicated that hormone metabolism, stress, and signaling were over-represented in ZAT18 OE lines. Several stress-responsive genes including COR47, ERD7, LEA6, and RAS1, and hormone signaling transduction-related genes including JAZ7 and PYL5 were identified as putative target genes of ZAT18. Taken together, ZAT18 functions as a positive regulator and plays a crucial role in the plant response to drought stress.


2020 ◽  
Vol 7 (01) ◽  
pp. 28-36
Author(s):  
Hayati Minarsih Iskandar ◽  
Sonny Suhandono ◽  
Jembar Pambudi ◽  
Tati Kristianti ◽  
Riza Arief Putranto ◽  
...  

Dehydrin (DHN) is known to play an important role in plant response and adaptation to abiotic stresses (drought, high salinity, cold, heat, etc.). Previous research reported the increased expression of DHN in sugarcane stems exposed to drought stress for 15 days which may be controlled by its corresponding stress inducible promoter. The DHN promoter was succesfully isolated from sugarcane variety PSJT 941 (Pr-1DHNSo) and was cloned to pBI121 expression vector fused to a β-glucuronidase (GUS) reporter gene.  The aim of this research was the functional testing of the Pr-1DHNSo promoter through transformation into tobacco plant treated with in vitro drought stress. Genetic transformation of Pr-1DHNSo construct was conducted by Agrobacterium tumefaciens. The transformed tobacco was then subjected to drought stress treatment using 40% PEG 6000  for five sequential incubations (0, 12, 24, 48 and 72 hours). The GUS assay reveal that the transformed tobacco treated with drought stress showed a blue color denoting GUS activity in leaf, stem and root tissues and this expression increased along with the length of the drought treatment. The analysis of gusA gene using real time-qPCR normalized to the L25 reference gene also showed that the expression increased in line with the length of time of drought stress.  The results presented in this study indicated that the Pr-1DHNSo promoter from sugarcane was expressed and induced by drought stress treatment in tobacco.


2020 ◽  
Vol 19 (3) ◽  
pp. 135-147
Author(s):  
Majid Golmohammadi ◽  
Omid Sofalian ◽  
Mehdi Taheri ◽  
Alireza Ghanbari ◽  
Valiollah Rasoli

The evergreen tree olive (Olea europaea L.) is the only species of the genus Olea that produces edible fruits with high ecological and economic value. This tree species has developed a series of physiochemical mechanisms to tolerate drought stress and grow under adverse climatic environments. One of these mechanisms is photosynthesis activities, so that as yet little information achieved about the relations between olive production and photosynthetic parameters under drought conditions. An experiment was carried out during two consecutive years (2015–2017) to study the response of 20 different olive tree cultivars (Olea europaea L.) to drought stress. Several parameters like net photosynthetic rate (PN), stomatal conductance (GS), transpiration rate (TE), photosynthetic pigments (total chlorophyll, chlorophyll a, b and carotenoid) and fruit yield were measured. The results of combined analysis of variance for fruit yield and other measured traits showed that year, drought treatment, cultivar main effects and their interactions were highly significant. The results indicated that drought stress reduced all traits, however GS (42.80%), PN (37.21%) and TE (37.17%) significantly affected by drought. Lower reduction in photosynthetic performance (PN, GS and TE) in the cultivar T7 compared to other olive cultivars allowed them to maintain better fruit yield. Principal component analysis (PCA) identified two PCs that accounted for 82.04 and 83.27% of the total variation in photosynthetic parameters under optimal and drought stress conditions, respectively. Taken together, mean comparison, relative changes due to drought and biplot analysis revealed that cultivars ‘T7’, ‘Roghani’, ‘Koroneiki’, ‘Korfolia’ and ‘Abou-satl’ displayed better response against drought stress. According to our results, one olive cultivar namely ‘T7’, could be used in olive breeding programs to improve new high yielding cultivars with drought tolerance for use in the drought-prone environments.


Author(s):  
Kartika Kartika ◽  
Benyamin Lakitan ◽  
Rofiqoh Purnama Ria

Drought stress during vegetative and/or generative stages could cause massive reduction in rice yield. This study evaluated effectiveness of hydro- and osmo-priming on improving seed germination, growth and development of upland rice under drought stress during late vegetative, booting, or heading stage. Treatments consisted of hydro-priming and osmo-priming consisted of three polyethylene glycol (PEG) concentrations i.e. 10%, 15%, and 20%. Results showed that application of osmo-priming at 10% PEG required longer time (21.93 hours) to reach 50% germination, lower germination and lower vigor index. However, after germination, seeds primed with 10% PEG exhibited better seedling growth than other seed priming treatments. Effects of seed priming on yield components were overshadowed by drought exposures. Drought imposed during vegetative stage did not significantly affect yield; however, regardless of seed priming treatments, yield reduction was inevitable in rice plants exposed to drought during booting or heading stages. Rice plant shortened time to reached physiological maturity as an adaptive mechanism if drought treatment was applied during heading stage. Keywords: Germination, Polyethylene glycol, Seedling growth, Seed priming, Yield component


2021 ◽  
Vol 16 (1) ◽  
pp. 1111-1121
Author(s):  
Yongqun Zhu ◽  
Qiuxu Liu ◽  
Wenzhi Xu ◽  
Li Yao ◽  
Xie Wang ◽  
...  

Abstract Drought is among the most important natural disasters with severe effects on animals and plants. MicroRNAs are a class of noncoding RNAs that play a crucial role in plant growth, development, and response to stress factors, including drought. However, the microRNAs in drought responses in common vetch (Vicia sativa), an annual herbaceous leguminous plant commonly used for forage by including it in mixed seeding during winter and spring, have not been characterized. To explore the microRNAs’ response to drought in common vetch, we sequenced 10 small RNA (sRNA) libraries by the next-generation sequencing technology. We obtained 379 known miRNAs belonging to 38 families and 47 novel miRNAs. The two groups had varying numbers of differentially expressed miRNAs: 85 in the comparison group D5 vs C5 and 38 in the comparison group D3 vs C3. Combined analysis of mRNA and miRNA in the same samples under drought treatment identified 318 different target genes of 123 miRNAs. Functional annotation of the target genes revealed that the miRNAs regulate drought-responsive genes, such as leucine-rich repeat receptor-like kinase-encoding genes (LRR-RLKs), ABC transporter G family member 1 (ABCG1), and MAG2-interacting protein 2 (MIP2). The genes were involved in various pathways, including cell wall biosynthesis, reactive oxygen removal, and protein transport. The findings in this study provide new insights into the miRNA-mediated regulatory networks of drought stress response in common vetch.


Sign in / Sign up

Export Citation Format

Share Document