scholarly journals Sedative and hypnotic effects of compound Anshen essential oil inhalation for insomnia

Author(s):  
Yu Zhong ◽  
Qin Zheng ◽  
Pengyi Hu ◽  
Xiaoying Huang ◽  
Ming Yang ◽  
...  

Abstract Backgrounds The chemical composition of many essential oils indicates that they have sedative and hypnotic effects, but there is still a lack of systematic studies on the sedative and hypnotic effects of essential oils. In addition, aromatherapy does not seem to have the side effects of many traditional psychotropic substances, which is clearly worthwhile for further clinical and scientific research. The clinical application of essential oils in aromatherapy has received increasing attention, and detailed studies on the pharmacological activities of inhaled essential oils are increasingly needed. Hypothesis/purpose As insomniacs are usually accompanied by symptoms of depression and anxiety of varying degrees, based on the theory of aromatherapy of Traditional Chinese Medicine, this experiment is to study a Compound Anshen essential oil that is compatible with Lavender essential oil, Sweet Orange essential oil, Sandalwood essential oil and other aromatic medicine essential oils with sedative and hypnotic effects, anti-anxiety and anti-depression effects. To study the sedative and hypnotic effects of Compound Anshen essential oil inhaled and the main chemical components of Compound Anshen essential oil, and to compare and analyze the pharmacodynamics of diazepam, a commonly used drug for insomnia. Methods The Open field test and Pentobarbital-induced sleep latency and sleep time experiments were used to analyze and compare the sedative and hypnotic effects of inhaling Compound Anshen essential oil and the administration of diazepam on mice. The changes of 5-HT and GABA in mouse brain were analyzed by Elisa. The main volatile constituents of Compound Anshen essential oil were analyzed by gas chromatography-mass spectrometry (GC-MS). Results Inhalation of Compound Anshen essential oil can significantly reduce the spontaneous activity of mice, reduce latency of sleeping time and prolong duration of sleeping time. The results of enzyme-linked immunosorbent assay showed that Compound Anshen essential oil can increase the content of 5-HT and GABA in mouse brain. The main volatile chemical constituents of the Compound Anshen essential oil are D-limonene (24.07%), Linalool (21.98%), Linalyl acetate (15.37%), α-Pinene (5.39%), and α-Santalol (4.8%). Conclusion The study found that the inhalation of Compound Anshen essential oil has sedative and hypnotic effect. This study provides a theoretical basis for further research and development of the sedative and hypnotic effects of Compound Anshen essential oil based on the theory of aromatherapy.

2021 ◽  
Vol 9 (1) ◽  
pp. 109-113
Author(s):  
Javed Ahamad ◽  
Subasini Uthirapathy

Pelargonium graveolens (Geranium) is a source of the finest quality of fragrance and its essential oils are used as antibacterial, and antifungal agents. The aim of the current research is to determine chemical constituents in the essential oil of P. graveolens by GC-MS and evaluate its antidiabetic activity via α-glucosidase inhibition assay. The chemical composition of P. graveolens essential oil was determined by GC/MS and its antidiabetic activity was assessed through inhibition of α-glucosidase enzyme in in-vitro models. GC-MS analysis determines 36 chemical components in the essential oil of P. graveolens leaves, and citronellyl isovalerate (10.41 %), menthol (9.61 %), linalool (8.63 %), p-menthone (6.31 %), and geranyl tiglate (4.99 %) were recorded as major constituents. The essential oil of P. graveolens leaves showed concentration dependant inhibition of α-glucosidase enzyme ranging from 28.13±1.41 to 74.24±2.53 µg/mL for concentration ranging from 31.25 to 1000 µg/mL. The IC50 values for of P. graveolens and acarbose were found as 93.72±4.76 and 80.4±2.17 µg/mL, respectively against the α-glucosidase enzyme. The study finding explores the chemical components of P. graveolens growing in the Iraqi Kurdistan region and scientifically supported its possible use in diabetic patients for controlling postprandial hyperglycemia.


2019 ◽  
Vol 32 (1) ◽  
pp. 36-40 ◽  
Author(s):  
Tran Thi Kim Ngan ◽  
Dinh Thi Thu Thuy ◽  
Tran Thi Tuyen ◽  
Cam Thi Inh ◽  
Hoang Thi Bich ◽  
...  

This study presents a chemometric study on agarwood (Aquilaria crassna) essential oils extracted from selected agarwood samples grown in various regions of Asia. Adopting gas chromatography-mass spectrometry (GC-MS) technique, it was revealed that essential oils, produced by hydrodistillation,constitutes mainly volatile aromatic compounds. Several major components are shared in all samples including dihydro-agarofuran-15-al, jinkoeremol, 10-epi-γ-eudesmol, agarospirol, valerianol, n-hexadecanoic acid, neopetasane and dihydrokaranone. Despite differences in composition, extraction yield and detected constituents found in analyzed samples, characteristic aromatic compounds were abundantly found in the Agarwood essential oil. These discrepancies could be due to cultivation season, climatic conditions and extraction methods. Unambiguous identification of components in agarwood essential oils thereby opens new potential in the application of high-value aromatic compounds in agarwood essential oil in cosmetic products, perfumes, and pharmaceuticals.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Taiwo Oluwafunmilola Abifarin ◽  
Gloria Aderonke Otunola ◽  
Anthony Jide Afolayan

This study was aimed at comparing the essential oils obtained from Heteromorpha arborescens leaves by Solvent-Free Microwave Extraction (SFME) and Hydrodistillation (HD) methods in terms of their chemical compositions, yield, CO2 emission, and energy consumption. The solvent-free microwave extraction method indicated a higher oil yield of 0.7 mL/200 g (0.35%) as compared to 0.59 mL/200 g (0.295%) obtained through hydrodistillation. GC-MS analysis of the oils revealed a total of 52 chemical components from both methods with the presence of 35 (96.52%) and 30 (71.15%) chemical constituents for HD and SFME, respectively. The major constituents observed in the essential oil extracted by SFME methods include α-pinene (6%), D-limonene (11.27%), β-ocimene (9.09%), β-phellandrene (6.33%), β-mycene (8.49%), caryophyllene (5.96%), and camphene (4.28%). However, in the hydrodistillation method, the oil was majorly composed of a-pinene (4.41%), β-pinene (10.68%), β-ocimene (6.30%), germacrene-D (5.09%), humulene (5.55%), and α-elemene (6.18%). The SFME method was better in terms of saving energy (0.25 kWh against 4.2 kWh of energy consumed), reduced CO2 emission (200 g against 3360 g of CO2), a higher yield, and better quality of essential oil due to the presence of higher valuable oxygenated compounds (8.52%) against that of the hydrodistillation method (2.96%). The SFME method is, therefore, a good alternative for extracting the oils of H. arborescens leaves since the essential oil yield is higher with more oxygenated compounds, considerable energy savings, lower cost, and reduced environmental burden at substantially reduced extraction time (30 min as opposed to 180 min).


Author(s):  
Odunayo Atewolara-odule ◽  
Oseyemi Olubomehin ◽  
Enitan Adesanya ◽  
Adejumoke Hashimi ◽  
Abdulrazaq Ogunmoye

Essential oil is a hydrophobic concentrated liquid which contains volatile aroma compounds from plants. Bambusa vulgaris grows widely in the tropical and subtropical regions and has been reported to have different ethnomedicinal values such as antimalaria and antioxidant. It is also known to be an ornamental plant. The essential oil was extracted from both the fresh and dried leaves of Bambusa vulgaris by hydrodistillation method using a Clevenger apparatus. The chemical constituents of the essential oils were characterized using gas chromatography and gas chromatography-mass spectrometry. The essential oils obtained are colourless with an herbal odour giving a yield of 0.64 w/w for the fresh sample and 1.08 w/w for the dried sample. A total of thirty-nine (39) compounds were identified from the essential oils of both samples. The major constituents in the fresh leaves were 3-aminodibenzofuran (19.2%), ?-ocimene (11.1%), undecane (9.6%), tridecane (8.6%), [3,2-b] pyridin-6-octahydropyrano (7.1%), 2-mono laurin (6.9%) and vinyl decanoate (5.9%). Prominent compounds of the essential oil in the dried leaves were chlorophenoxymethylenimino sulfur pentafluoride (74.5%) and 2,2,6,6-tetramethyl-3,5-heptanedione (17.3%). Undecane, tridecane, hexadecane and octadecane were found both in the fresh and dried leaves. The chemical constituents of the essential oils from Nigeria Bambusa vulgaris were reported in this study for the first time to the best our knowledge and this could be useful in aromatherapy.


Author(s):  
Madhuri Grover ◽  
Tapan Behl ◽  
Mohit Sanduja ◽  
Md. Habibur Rahman ◽  
Amirhossein Ahmadi

Background: Aromatherapy is a traditional practice of employing essential oils for the therapeutic purposes, currently headed under the category of complementary and adjuvant medicine. Objective: The aim of this review article is to summarize the potential health benefits of aromatic essential oil from traditional times till the present. It also proposed some mechanisms which can be utilized as basis for using aromatherapy in cancer and cancer linked complications. Methods: To find out the relevant and authentic data, several search engines like Science direct, Pubmed, research gate, etc. were thoroughly checked by inserting key words like aromatherapy, complementary, adjuvant therapy etc. to collect the relevant material in context of article. Also, the chemical components of essential oil were classified based on the presence of functional groups, which are further explored for their cytotoxic potential. Results: The result depicted the anti-cancer potential of chemical constituents of essential oil against different types of cancer. Moreover, the essential oils show promising anti-inflammatory, anti-microbial, anti-oxidant and anti-mutagenic potential in several studies, which collectively can form the basis for initiation of its anti-cancer utility. Conclusion: Aromatherapy can serve as adjuvant economic therapy in cancer after the standardization of protocol.


2020 ◽  
Vol 189 ◽  
pp. 02016
Author(s):  
Hui Hu ◽  
Qingan Li ◽  
Shenxi Chen ◽  
Yuancai Liu ◽  
Huameng Gong ◽  
...  

To evaluate the antibacterial activity and chemical constituents of the essential oil from the artemisia argyi grown in Qichun (China). METHODS: Steam distillation method was used to extract volatile oil from Artemisia argyi. The antibacterial effect of the volatile oil was investigated by the plate coating method and the double gradient liquid dilution method. Gas chromatography-mass spectrometry(GC-MS) was applied for the identification of chemical constituents in volatile oil from Artemisia argyi and the relative percentage of each component was calculated by area normalization. RESULTS: The essential oil from artemisia argyi grown in Qichun (China) has significant antibacterial activity against staphylococcus aureus, pseudomonas aeruginosa, salmonella, candida albicans, aspergillus niger and aspergillus flavus. And fifty chemical components were detected in the essential oil, and twenty compounds were identified, accounting for 95.95% of total essential oil. And the artemisol in artemisia argyi grown in Qichun (China) was found to be the highest compared with the same species from other producing areas. CONCLUSION: The essential oil from artemisia argyi grown in Qichun (China) was a potent antibacterial plant extract with potential applications as an antibacterial drugs or food preservative.


Author(s):  
Mohamed Nadjib Boukhatem ◽  
Mohamed Amine Ferhat ◽  
Abdelkrim Kameli ◽  
Fairouz Saidi ◽  
Kerkadi Walid ◽  
...  

Despite the reputation earned by aromatic and medicinal plants of Algeria, the chemical constituents of Eucalyptus globulus essential oil (EGEO) of Blida origin has not previously been investigated. Thus, the present study has been conducted for the determination of chemical constituents and different physico-chemical properties of the EGEO. Chemical composition of the EGEO, grown in Algeria, was analysed by Gas Chromatography-Mass Spectrometry. The chemical components were identified on the basis of Retention Time and comparing with mass spectral database of standard compounds. Relative amounts of detected compounds were calculated on the basis of GC peak areas. Fresh leaves of E. globulus on steam distillation yielded 0.96 % (v/w) of essential oil whereas the analysis resulted in the identification of a total of 11 constituents, 1.8 cineole (85.8 %), α-pinene (7.2 %), and β-myrcene (1.5 %) being the main components. Other notable compounds identified in the oil were β-pinene, limonene, α-phellandrene, γ-terpinene, linalool, pinocarveol, terpinen-4-ol, and α-terpineol. The physical properties such as specific gravity, refractive index and optical rotation and the chemical properties such as saponification value, acid number and iodine number of the EGEO were examined. The oil extracted has been analyzed to have 1.4602 - 1.4623 refractive index value, 0.918 - 0.919 specific gravity (sp.gr.), +9 - +10 optical rotation that satisfy the standards stipulated by European Pharmacopeia. All the physical and chemical parameters were in the range indicated by the ISO standards. Our findings will help to access the quality of the Eucalyptus oil which is important in the production of high value essential oils that will help to improve the economic condition of the community as well as the nation.


Author(s):  
Papias Nteziyaremye ◽  
Jackson Cherutoi ◽  
Jacqueline Makatiani ◽  
Théoneste Muhizi

Chemical composition and essential oil contents among essential oil-bearing plants are mostly influenced by different factors including ecological features of habitat. In this study, variation in yield and chemical composition of essential oils (EOs) from the leaves of Cupressus lusitanica Mill. (Cupressaceae) in different regions of Rwanda was investigated. Extraction of essential oils from fresh leaves of C. lusitanica collected in March 2021 and April, 2021 from three different ecological zones of Rwanda, Buberuka highland zone (Burera), Central plateau zone (Huye) and Eastern savannah zone (Kayonza) was realized through steam distillation. The chemical compositions of distilled EOs were analyzed using both Fourier transform infrared (FT-IR) spectroscopy and gas chromatography-mass spectrometry (GC-MS), while their yields were determined by simple calculus. The average yields of the EOs were 0.27 ± 0.02, 0.34 ± 0.02 and 0.39 ± 0.01% (v/w) for Burera, Huye and Kayonza, respectively. Results of FT-IR analysis were confirmed by those of GC-MS analysis, and indicated the presence of different groups of compounds including aliphatic alkanes, carboxylic acids, alkenes, aldehydes, aromatics and ketones in the EOs. GC-MS results revealed that sabinene (20.84%), myrcene (19.63%), α-pinene (10.23%) and δ-3-carene (10.13%) were the dominant chemical constituents for EOs of C. lusitanica from Burera. Umbellulone (24.21%), δ-3-carene (16.76%), sabinene (10.54%) and α-pinene (8.21%) were the main constituents for EOs of C. lusitanica from Huye, while γ-terpinene (18.77%), umbellulone (18.16%), isobornyl acetate (9.972%), and myrcene (7.20%) were the major components of EOs of C. lusitanica from Kayonza. The current results demonstrated an intraspecific variation in content and chemical profile of C. lusitanica EOs from one geographical region to another. The observed variations are mostly due to the interactions of C. lusitanica species with climatic and environmental conditions of ecological habitat. However, it could also be the effects of various biotic factors, as well as maturity of plant and stage of plant growth. Further studies are needed to establish the influence of different geo-climatic and environmental factors on each single major component of C. lusitanica EOs.


2020 ◽  
Vol 15 (12) ◽  
pp. 1934578X2098123
Author(s):  
Peng-fei Yang ◽  
Hui Lu ◽  
Qiong-bo Wang ◽  
Zhi-wei Zhao ◽  
Qiang Liu ◽  
...  

Detailed chemical constituents of essential oil from the Pterocephalus hookeri leaves and its antimicrobial activities were investigated in this study. The essential oil, obtained by hydrodistillation, was characterized by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry analyses. Among the 90 identified compounds, hexadecanoic acid (21.27%), phytol (8.03%), furfural (7.08%), oleic acid (5.25%), and phytone (4.56%) were the major components. In the antimicrobial assay, the essential oil showed strong inhibitory activities against Escherichia coli, Candida albicans, and Staphylococcus aureus with minimum inhibitory concentration values of 31.3, 62.5, and 125 µg/mL, respectively. To our knowledge, this is the first report concerning chemical composition and antimicrobial activities of the essential oil from Pterocephalus hookeri.


2013 ◽  
Vol 59 (4) ◽  
pp. 86-96 ◽  
Author(s):  
Iyad Ghanem ◽  
Adnan Audeh ◽  
Amer Abu Alnaser ◽  
Ghaleb Tayoub

Abstract The objective of current study was to determine the chemical constituents and fumigant toxicity of essential oil isolated by hydro-distillation from dry fruit of bitter fennel (Foeniculum vulgare Miller). The chemical composition of the essential oil was assessed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Constituents of the oil were determined as α-pinene (1.6%) and limonene (3.3%), fenchone (27.3%), estragol (3.9%), and (E)-anethole (61.1%). The fumigant toxicity of the essential oil was tested on larvae of the stored product insect Trogoderma granarium Everts. The mortality of larvae was tested at different concentrations ranging from 31.2 to 531.2 μl/l air and at different exposure times (24 and 48 h). Probit analysis showed that LC50 and LC90 following a 48 h-exposure period for essential oil were 38.4 and 84.6 μl/l, respectively. These results showed that the essential oil from F. vulgare may be applicable to the management of populations of stored-product insects.


Sign in / Sign up

Export Citation Format

Share Document