scholarly journals Indole alkaloids inhibit zika and chikungunya virus infection in different cell lines

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Laura Milena Monsalve-Escudero ◽  
Vanessa Loaiza-Cano ◽  
Yina Pájaro-González ◽  
Andrés Felipe Oliveros-Díaz ◽  
Fredyc Diaz-Castillo ◽  
...  

Abstract Background In recent years, an increase in the occurrence of illnesses caused by two clinically- important arboviruses has been reported: Zika virus (ZIKV) and Chikungunya virus (CHIKV). There is no licensed antiviral treatment for either of the two abovementioned viruses. Bearing in mind that the antiviral effect of indole alkaloids has been reported for other arboviral models, the present study proposed to evaluate the antiviral in vitro and in silico effects of four indole alkaloids on infections by these two viruses in different cell lines. Methods The antiviral effects of voacangine (VOAC), voacangine-7-hydroxyindolenine (VOAC-OH), rupicoline and 3-oxo voacangine (OXO-VOAC) were evaluated in Vero, U937 and A549 cells using different experimental strategies (Pre, Trans, Post and combined treatment). Viral infection was quantified by different methodologies, including infectious viral particles by plating, viral genome by RT-qPCR, and viral protein by cell ELISA. Moreover, molecular docking was used to evaluate the possible interactions between structural and nonstructural viral proteins and the compounds. The results obtained from the antiviral strategies for each experimental condition were compared in all cases with the untreated controls. Statistically significant differences were identified using a parametric Student’s t-test. In all cases, p values below 0.05 (p < 0.05) were considered statistically significant. Results In the pre-treatment strategy in Vero cells, VOAC and VOAC-OH inhibited both viral models and OXO-VOAC inhibited only ZIKV; in U937 cells infected with CHIKV/Col, only VOAC-OH inhibited infection, but none of the compounds had activity in A549 cells; in U937 cells and A549 cells infected with ZIKV/Col, the three compounds that were effective in Vero cells also had antiviral activity. In the trans-treatment strategy, only VOAC-OH was virucidal against ZIKV/Col. In the post-treatment strategy, only rupicoline was effective in the CHIKV/Col model in Vero and A549 cells, whereas VOAC and VOAC-OH inhibited ZIKV infection in all three cell lines. In the combined strategy, VOAC, VOAC-OH and rupicoline inhibited CHIKV/Col and ZIKV/Col, but only rupicoline improved the antiviral effect of ZIKV/Col-infected cultures with respect to the individual strategies. Molecular docking showed that all the compounds had favorable binding energies with the structural proteins E2 and NSP2 (CHIKV) and E and NS5 (ZIKV). Conclusions The present study demonstrates that indole alkaloids are promising antiviral drugs in the process of ZIKV and CHIKV infection; however, the mechanisms of action evaluated in this study would indicate that the effect is different in each viral model and, in turn, dependent on the cell line.

2018 ◽  
Vol 26 ◽  
pp. 204020661880758 ◽  
Author(s):  
Evelyn J Franco ◽  
Jaime L Rodriquez ◽  
Justin J Pomeroy ◽  
Kaley C Hanrahan ◽  
Ashley N Brown

Chikungunya virus (CHIKV) is a mosquito-borne virus that has recently emerged in the Western Hemisphere. Approved antiviral therapies or vaccines for the treatment or prevention of CHIKV infections are not available. This study aims to evaluate the antiviral activity of commercially available broad-spectrum antivirals against CHIKV. Due to host cell-specific variability in uptake and intracellular processing of drug, we evaluated the antiviral effects of each agent in three cell lines. Antiviral activities of ribavirin (RBV), interferon-alfa (IFN-α) and favipiravir (FAV) were assessed in CHIKV-infected Vero, HUH-7, and A549 cells. CHIKV-infected cells were treated with increasing concentrations of each agent for three days and viral burden was quantified by plaque assay on Vero cells. Cytotoxic effects of RBV, FAV and IFN-α were also evaluated. Antiviral activity differed depending on the cell line used for evaluation. RBV had the greatest antiviral effect in HUH-7 cells (EC50 = 2.575 µg/mL); IFN-α was most effective in A549 cells (EC50 = 4.235 IU/mL); and FAV in HUH-7 cells (EC50 = 20.00 μg/mL). The results of our study show FAV and IFN-α are the most promising candidates, as their use led to substantial reductions in viral burden at clinically achievable concentrations in two human-derived cell lines. FAV is an especially attractive candidate for further investigation due to its oral bioavailability. These findings also highlight the importance of cell line selection for preclinical drug trials.


2021 ◽  
Vol 15 (11) ◽  
pp. e0009916
Author(s):  
Berit Troost-Kind ◽  
Martijn J. van Hemert ◽  
Denise van de Pol ◽  
Heidi van der Ende-Metselaar ◽  
Andres Merits ◽  
...  

Tomatidine, a natural steroidal alkaloid from unripe green tomatoes has been shown to exhibit many health benefits. We recently provided in vitro evidence that tomatidine reduces the infectivity of Dengue virus (DENV) and Chikungunya virus (CHIKV), two medically important arthropod-borne human infections for which no treatment options are available. We observed a potent antiviral effect with EC50 values of 0.82 μM for DENV-2 and 1.3 μM for CHIKV-LR. In this study, we investigated how tomatidine controls CHIKV infectivity. Using mass spectrometry, we identified that tomatidine induces the expression of p62, CD98, metallothionein and thioredoxin-related transmembrane protein 2 in Huh7 cells. The hits p62 and CD98 were validated, yet subsequent analysis revealed that they are not responsible for the observed antiviral effect. In parallel, we sought to identify at which step of the virus replication cycle tomatidine controls virus infectivity. A strong antiviral effect was seen when in vitro transcribed CHIKV RNA was transfected into Huh7 cells treated with tomatidine, thereby excluding a role for tomatidine during CHIKV cell entry. Subsequent determination of the number of intracellular viral RNA copies and viral protein expression levels during natural infection revealed that tomatidine reduces the RNA copy number and viral protein expression levels in infected cells. Once cells are infected, tomatidine is not able to interfere with active RNA replication yet it can reduce viral protein expression. Collectively, the results delineate that tomatidine controls viral protein expression to exert its antiviral activity. Lastly, sequential passaging of CHIKV in presence of tomatidine did not lead to viral resistance. Collectively, these results further emphasize the potential of tomatidine as an antiviral treatment towards CHIKV infection.


2021 ◽  
Author(s):  
Israa Elbashir ◽  
Aisha Aisha Nasser J M Al-Saei ◽  
Paul Thornalley ◽  
Naila Rabbani

Background and aims: In 2020 a global pandemic was declared caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2). The pandemic is still ongoing and continues to cause considerable mortality and morbidity world-wide and new variants of the virus are emerging. Rapid development and rollout of vaccines for SARS-CoV-2 is in progress to counter the pandemic but has been tempered by the emergence of new SARS-CoV-2 variants, many of which exhibit reduced vaccine effectiveness. To date there is no approved antiviral treatment for coronavirus disease 2019 (COVID-19). Several studies have shown that Manuka honey has virucidal/antiviral effect. Methylglyoxal (MG), a bioactive component in Manuka honey, has antiviral activity in vitro. MG may modify arginine residues in the functional domains of viral spike and nucleocapsid proteins, resulting in loss of charge, protein misfolding and inactivation. The aim of this study was to characterize the antiviral activity of Manuka honey against SARS-CoV-2 in vitro Materials and methods: Wild-type SARS-CoV-2 with titers of multiplicities of infection (MOI) 0.1 and 0.05 were incubated with 2-fold serial dilutions of 250+ Manuka honey (equivalent to 250 to 31 µM) in infection medium (Dulbecco's Modified Eagle Medium + 2% fetal bovine serum + 100 units/ml penicillin + 100 µg/ml streptomycin) for 3 h. Manuka honey treated and untreated control SARS-CoV-2 was incubated with confluent cultures of Vero cells in vitro for 1 h, cultures washed with phosphate-buffered saline and incubated in fresh infection medium at 37°C for 4 - 5 days until 70% of virus control cells displayed cytopathic effect. We also studied the effect of scavenging MG in Manuka Honey with aminoguanidine (AG; 500 µM) on virucidal activity. The antiviral activity of MG was judged by median tissue culture infectious dose (TCID50) assays. Data analysis was by logistic regression. TCID50 (mean ± SD) was deduced by interpolation. Results: Diluted Manuka honey inhibited SARS-CoV-2 replication in Vero cells. SARS-CoV-2 was incubated in diluted Manuka honey in medium at 37°C for 3 h before adding to Vero cells. Manuka honey dilutions down to 125 µM MG equivalents completely inhibited cytopathic effect of SARS-CoV-2 whereas 31.25 µM and 62.5 µM MG equivalents had limited effect. Logistic regression and interpolation of the cytopathic effect indicated that the TCID50 = 72 ± 2 µM MG equivalents for MOI of 0.1. Prior scavenging of MG by addition of AG resulted in virus replication levels equivalent to those seen in the virus control without AG. Conclusion: Manuka honey has antiviral activity against SARS-CoV-2 when incubated with the virus in cell-free media at no greater than ca. 40-fold dilutions of 250+ grade. Anti-viral activity was inhibited by AG, consistent with the anti-viral effect being mediated by MG. Manuka honey dilutions in MG equivalents had similar antiviral effect compared to authentic MG, also consistent with MG content of Manuka honey mediating the antiviral effect. Whilst Manuka honey may inactivate SARS-CoV-2 in cell-free culture medium, its antiviral activity in vivo for other than topical application may be limited because of the rapid metabolism of MG by the glyoxalase system and limited bioavailability of oral MG.


2019 ◽  
Vol 19 (11) ◽  
pp. 914-926 ◽  
Author(s):  
Maiara Bernardes Marques ◽  
Michael González-Durruthy ◽  
Bruna Félix da Silva Nornberg ◽  
Bruno Rodrigues Oliveira ◽  
Daniela Volcan Almeida ◽  
...  

Background:PIM-1 is a kinase which has been related to the oncogenic processes like cell survival, proliferation, and multidrug resistance (MDR). This kinase is known for its ability to phosphorylate the main extrusion pump (ABCB1) related to the MDR phenotype.Objective:In the present work, we tested a new mechanistic insight on the AZD1208 (PIM-1 specific inhibitor) under interaction with chemotherapy agents such as Daunorubicin (DNR) and Vincristine (VCR).Materials and Methods:In order to verify a potential cytotoxic effect based on pharmacological synergism, two MDR cell lines were used: Lucena (resistant to VCR) and FEPS (resistant to DNR), both derived from the K562 non-MDR cell line, by MTT analyses. The activity of Pgp was ascertained by measuring accumulation and the directional flux of Rh123. Furthermore, we performed a molecular docking simulation to delve into the molecular mechanism of PIM-1 alone, and combined with chemotherapeutic agents (VCR and DNR).Results:Our in vitro results have shown that AZD1208 alone decreases cell viability of MDR cells. However, co-exposure of AZD1208 and DNR or VCR reverses this effect. When we analyzed the ABCB1 activity AZD1208 alone was not able to affect the pump extrusion. Differently, co-exposure of AZD1208 and DNR or VCR impaired ABCB1 activity, which could be explained by compensatory expression of abcb1 or other extrusion pumps not analyzed here. Docking analysis showed that AZD1208 is capable of performing hydrophobic interactions with PIM-1 ATP- binding-site residues with stronger interaction-based negative free energy (FEB, kcal/mol) than the ATP itself, mimicking an ATP-competitive inhibitory pattern of interaction. On the same way, VCR and DNR may theoretically interact at the same biophysical environment of AZD1208 and also compete with ATP by the PIM-1 active site. These evidences suggest that AZD1208 may induce pharmacodynamic interaction with VCR and DNR, weakening its cytotoxic potential in the ATP-binding site from PIM-1 observed in the in vitro experiments.Conclusion:Finally, the current results could have a pre-clinical relevance potential in the rational polypharmacology strategies to prevent multiple-drugs resistance in human leukemia cancer therapy.


2020 ◽  
Vol 17 (12) ◽  
pp. 951-958
Author(s):  
Pallava Nagaraju ◽  
Pedavenkatagari Narayana Reddy ◽  
Pannala Padmaja ◽  
Vinod G. Ugale

A new class of 4H,5H-benzo[4,5]thiazolo[3,2-a]pyrano[2,3-d]pyrimidin-5-one and 5H,6Hpyrano[ 2,3-d]thiazolo[3,2-a]pyrimidin-5-one derivatives were synthesized via the one-pot threecomponent reaction of 2-hydroxy-4H-benzo[4,5]thiazolo[3,2-a]pyrimidin-4-one and 7-hydroxy-5Hthiazolo[ 3,2-a]pyrimidin-5-one to various aromatic aldehydes and malononitrile. This domino transformation involves the formation of pyranopyrimidine ring by the formation of three C–C bonds and one C– O bond a single synthetic operation. As the products precipitate out of the reaction, simple filtration is enough to gather the products, and thus, there is no need for work-up or column-chromatography. The synthesized thiazole/benzothiazole fused pyranopyrimidine derivatives were evaluated for their antiproliferative activity against four cancer cell lines namely DU 145 (prostate cancer), Hela (Human cervical cancer), MDA-MB-231 (breast cancer), HT-29 (Human colon cancer) and normal cell line HEK293 (human embryonic kidney cells). The results demonstrated that synthesized compounds were selective in its cytotoxicity to cancer cells compared to normal cells. Among these compounds, 2-amino-9- methoxy-5-oxo-4-(3,4,5-trimethoxyphenyl)-4H,5H-benzo[4,5]thiazolo[3,2-a]pyrano[2,3-d]pyrimidine- 3-carbonitrile 4i exhibited the most potent antiproliferative activity against the tested cell lines. Molecular docking studies revealed that these active heterocyclic molecules bind selectively in the colchicine binding site of tubulin polymer.


Author(s):  
Junjian Li ◽  
Lianbao Ye ◽  
Yuanyuan Wang ◽  
Ying Liu ◽  
Xiaobao Jin ◽  
...  

Background: Spirocyclic indoline compounds widely exist in numerous natural products with good biological activities and some drug molecules in many aspects. In recent years, it has attracted extensive attention as potent anti-tumor agents in the fields of pharmacology and chemistry. Objective: In this study, we focused on designing and synthesizing a set of novel 1'-H-spiro[indole-3,4'-piperidine] derivatives, which were evaluated by preliminary bioactivity experiment in vitro and molecular docking. Method: The key intermediate 1'-methylspiro[indoline-3,4'-piperidine] (B4) reacted with benzenesulfonyl chloride with different substituents under alkaline condition to obtain its sulfonyl derivatives (B5-B10). We evaluated their antiproliferative activities against A549, BEL-7402 and HeLa cells by MTT assay. We performed the CDOCKER module in Discovery Studio 2.5.5 software for molecular modeling of compound B5, and investigated the binding of compound B5 with the target proteins from PDB database. Results: The results indicated that compounds B4-B10 exhibited good antiproliferative activities against the above three types of cells, in which compound B5 with chloride atom as electron-withdrawing substituent on a phenyl ring showed the highest potency against BEL-7402 cells (IC50=30.03±0.43 μg/mL). By binging of the prominent bioactive compound B5 to CDK, c-Met, EGFR protein crystals, The binding energy of B5 with these three types receptors are -44.3583 kcal/mol, - 38.3292 kcal/mol, -33.3653 kcal/mol respectively. Conclusion: Six 1'-methylspiro[indoline-3,4'-piperidine] derivatives were synthesized and evaluated against BEL-7402, A- 549, HeLa cell lines. Compound B5 showed significant inhibition on BEL-7402 cell lines. Molecular docking revealed that B5 showed good affinity by the good fitting between B5 and these three targets with amino acid residues in active sites which encourage us to conduct further evaluation such as the kinase experiment.


2019 ◽  
Vol 14 (4) ◽  
pp. 323-332 ◽  
Author(s):  
Priya Narang ◽  
Mehak Dangi ◽  
Deepak Sharma ◽  
Alka Khichi ◽  
Anil Kumar Chhillar

Background: Chikungunya infection flare-ups have manifested in nations of Africa, Asia, and Europe including Indian and Pacific seas. It causes fever and different side effects include muscle torment, migraine, sickness, exhaustion and rash. It has turned into another, startling general medical issue in numerous tropical African and Asian countries and is presently being viewed as a genuine risk. No antiviral treatment or vaccine is yet available for this ailment. The current treatment is centered just on mitigating its side effects. Objective: The objective was to encourage the study on this viral pathogen, by the development of a database dedicated to Chikungunya Virus, that annotates and unifies the related data from various resources. associations while known disease-lncRNA associations are required only. Method: It undertook a consolidated approach for Chikungunya Virus genomic, proteomic, phylogenetics and therapeutic learning, involving the entire genome sequences and their annotation utilizing different in silico tools. Annotation included the information for CpG Island, usage bias, codon context and phylogenetic analysis at both the genome and proteome levels. Results: This database incorporates information of 41 strains of virus causing Chikungunya infection that can be accessed conveniently as well as downloaded effortlessly. Therapeutics section of this database contains data about B and T cell Epitopes, siRNAs and miRNAs that can be used as potential therapeutic targets. Conclusion: This database can be explored by specialists and established researchers around the world to assist their research on this non-treatable virus. It is a public database available from “www.chkv.in”.</P>


2019 ◽  
Vol 18 (11) ◽  
pp. 1639-1648 ◽  
Author(s):  
Daipeng Xiao ◽  
Fen He ◽  
Dongming Peng ◽  
Min Zou ◽  
Junying Peng ◽  
...  

Background: Berberine (BBR), an isoquinoline plant alkaloid isolated from plants such as Coptis chinensis and Hydrastis canadensis, own multiple pharmacological activities. Objective: In this study, seven BBR derivatives were synthesized and their anticancer activity against HeLa cervical and A549 human lung cancer cell lines were evaluated in vitro. Methods: The anti-cancer activity was measured by MTT assay, and apoptosis was demonstrated by the annexin V-FITC/PI staining assay. The intracellular oxidative stress was investigated through DCFH-DA assay. The molecular docking study was carried out in molecular operating environment (MOE). Results: Compound B3 and B5 showed enhanced anti-cancer activity compared with BBR, the IC50 for compound B3 and B5 were significantly lower than BBR, and compound B3 at the concentration of 64 or 128 µM induced apoptosis in HeLa and A549 cell lines. The reactive oxygen species (ROS) was generated in both cell lines when treated with 100 µM of all the compounds, and compound B3 and B5 induced higher activity in the generation of ROS, while compound B3 exhibited the highest activity, these results are in accordance with the cytotoxicity results, indicating the cytotoxicity were mostly generated from the oxidative stress. In addition, molecular docking analysis showed that compound B3 had the greatest affinity with Hsp90. Upon binding, the protective function of Hsp90 was lost, which might explain its higher cytotoxicity from molecular interaction aspect. Conclusion: All the results demonstrated that compound B3 and B5 showed significantly higher anti-cancer ability than BBR, and compound B3 is a promising anticancer drug candidate.


2020 ◽  
Vol 20 (10) ◽  
pp. 1241-1249
Author(s):  
Hong-Chuan Liu ◽  
Li-Ming Qiao ◽  
Wei Zheng ◽  
Zhao-Bao Xiang ◽  
Hai-Sheng Chen ◽  
...  

Background: Rabdosia japonica has been historically used in China as a popular folk medicine for the treatment of cancer, hepatitis, and gastricism. Glaucocalyxin A (GLA), an ent-kaurene diterpene isolated from Rabdosia japonica, is one of the main active ingredients showing potent inhibitory effects against several types of tumor cells. To the best of our knowledge, studies regarding the structural modification and Structure- Activity Relations (SAR) of this compound have not yet been reported. Objective: The aim of this study was to discover more potent derivatives of GLA and investigate their SAR and cytotoxicity mechanisms. Methods: Novel 7-O- and 14-O-derivatives of GLA were synthesized by condensation of acids or acyl chloride. The anti-tumor activities of these derivatives against various human cancer cell lines were evaluated in vitro by MTT assays. Apoptosis assays of compound 17 (7,14-diacylation product) were performed on A549 and HL-60 cells by flow cytometry and TUNNEL. The acute toxicity of this compound was tested on mice, at the dose of 300mg per kg body weight. Results: Seventeen novel 7-O- and 14-O-derivatives of GLA (1-17) were synthesized. These compounds showed potent cytotoxicity against the tested cancer cell lines, and almost all of them were found to be more cytotoxic than GLA and oridonin. Of the synthesized derivatives, compound 17 presented the greatest cytotoxicity, with IC50 values of 0.26μM and 1.10μM in HL-60 and CCRF-CEM cells, respectively. Furthermore, this compound induced weak apoptosis of A549 cells but showed great potential in stimulating the apoptosis of HL- 60 cells. Acute toxicity assays indicated that compound 17 is relatively safer. Conclusion: The results reported herein indicate that the synthesized GLA derivatives exhibited greater cytotoxicity against leukemia cells than against other types of tumors. In particular, 7,14-diacylation product of GLA was found to be an effective anti-tumor agent. However, the cytotoxicity mechanism of this product in A549 cells is expected to be different than that in other tumor cell lines. Further research is needed to confirm this hypothesis.


2020 ◽  
Vol 21 (1) ◽  
pp. 42-60
Author(s):  
Farah Nawaz ◽  
Ozair Alam ◽  
Ahmad Perwez ◽  
Moshahid A. Rizvi ◽  
Mohd. Javed Naim ◽  
...  

Background: The Epidermal Growth Factor Receptor (known as EGFR) induces cell differentiation and proliferation upon activation through the binding of its ligands. Since EGFR is thought to be involved in the development of cancer, the identification of new target inhibitors is the most viable approach, which recently gained momentum as a potential anticancer therapy. Objective: To assess various pyrazole linked pyrazoline derivatives with carbothioamide for EGFR kinase inhibitory as well as anti-proliferative activity against human cancer cell lines viz. A549 (non-small cell lung tumor), MCF-7 (breast cancer cell line), SiHa (cancerous tissues of the cervix uteri), and HCT-116 (colon cancer cell line). Methods: In vitro EGFR kinase assay, in vitro MTT assay, Lactate dehydrogenase release, nuclear staining (DAPI), and flow cytometry cell analysis. Results: Compounds 6h and 6j inhibited EGFR kinase at concentrations of 1.66μM and 1.9μM, respectively. Furthermore, compounds 6h and 6j showed the most potent anti-proliferative results against the A549 KRAS mutation cell line (IC50 = 9.3 & 10.2μM). Through DAPI staining and phase contrast microscopy, it was established that compounds 6h and 6j also induced apoptotic activity in A549 cells. This activity was further confirmed by FACS using Annexin-V-FITC and Propidium Iodide (PI) labeling. Molecular docking studies performed on 6h and 6j suggested that the compounds can bind to the hinge region of ATP binding site of EGFR tyrosine kinase in a similar pose as that of the standard drug gefitinib. Conclusion: The potential anticancer activity of compounds 6h and 6j was confirmed and need further exploration in cancer cell lines of different tissue origin and signaling pathways, as well as in animal models of cancer development.


Sign in / Sign up

Export Citation Format

Share Document