scholarly journals Genome-based engineering of ligninolytic enzymes in fungi

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Michael Dare Asemoloye ◽  
Mario Andrea Marchisio ◽  
Vijai Kumar Gupta ◽  
Lorenzo Pecoraro

Abstract Background Many fungi grow as saprobic organisms and obtain nutrients from a wide range of dead organic materials. Among saprobes, fungal species that grow on wood or in polluted environments have evolved prolific mechanisms for the production of degrading compounds, such as ligninolytic enzymes. These enzymes include arrays of intense redox-potential oxidoreductase, such as laccase, catalase, and peroxidases. The ability to produce ligninolytic enzymes makes a variety of fungal species suitable for application in many industries, including the production of biofuels and antibiotics, bioremediation, and biomedical application as biosensors. However, fungal ligninolytic enzymes are produced naturally in small quantities that may not meet the industrial or market demands. Over the last decade, combined synthetic biology and computational designs have yielded significant results in enhancing the synthesis of natural compounds in fungi. Main body of the abstract In this review, we gave insights into different protein engineering methods, including rational, semi-rational, and directed evolution approaches that have been employed to enhance the production of some important ligninolytic enzymes in fungi. We described the role of metabolic pathway engineering to optimize the synthesis of chemical compounds of interest in various fields. We highlighted synthetic biology novel techniques for biosynthetic gene cluster (BGC) activation in fungo and heterologous reconstruction of BGC in microbial cells. We also discussed in detail some recombinant ligninolytic enzymes that have been successfully enhanced and expressed in different heterologous hosts. Finally, we described recent advance in CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas (CRISPR associated) protein systems as the most promising biotechnology for large-scale production of ligninolytic enzymes. Short conclusion Aggregation, expression, and regulation of ligninolytic enzymes in fungi require very complex procedures with many interfering factors. Synthetic and computational biology strategies, as explained in this review, are powerful tools that can be combined to solve these puzzles. These integrated strategies can lead to the production of enzymes with special abilities, such as wide substrate specifications, thermo-stability, tolerance to long time storage, and stability in different substrate conditions, such as pH and nutrients.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Rozina Rashid ◽  
Muhammad Sohail

AbstractThe capacity of different Bacillus species to produce large amounts of extracellular enzymes and ability to ferment various substrates at a wide range of pH and temperature has placed them among the most promising hosts for the industrial production of many improved and novel products. The global interest in prebiotics, for example, xylooligosaccharides (XOs) is ever increasing, rousing the quest for various forms with expanded productivity. This article provides an overview of xylanase producing bacilli, with more emphasis on their capacity to be used in the production of the XOs, followed by the purification strategies, characteristics and application of XOs from bacilli. The large-scale production of XOs is carried out from a number of xylan-rich lignocellulosic materials by chemical or enzymatic hydrolysis followed by purification through chromatography, vacuum evaporation, solvent extraction or membrane separation methods. Utilization of XOs in the production of functional products as food ingredients brings well-being to individuals by improving defense system and eliminating pathogens. In addition to the effects related to health, a variety of other biological impacts have also been discussed.


Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1279
Author(s):  
Manuel Checa ◽  
Sergio Nogales-Delgado ◽  
Vicente Montes ◽  
José María Encinar

Once a biorefinery is ready to operate, the main processed materials need to be completely evaluated in terms of many different factors, including disposal regulations, technological limitations of installation, the market, and other societal considerations. In biorefinery, glycerol is the main by-product, representing around 10% of biodiesel production. In the last few decades, the large-scale production of biodiesel and glycerol has promoted research on a wide range of strategies in an attempt to valorize this by-product, with its transformation into added value chemicals being the strategy that exhibits the most promising route. Among them, C3 compounds obtained from routes such as hydrogenation, oxidation, esterification, etc. represent an alternative to petroleum-based routes for chemicals such as acrolein, propanediols, or carboxylic acids of interest for the polymer industry. Another widely studied and developed strategy includes processes such as reforming or pyrolysis for energy, clean fuels, and materials such as activated carbon. This review covers recent advances in catalysts used in the most promising strategies considering both chemicals and energy or fuel obtention. Due to the large variety in biorefinery industries, several potential emergent valorization routes are briefly summarized.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sadaf Vahdat ◽  
Sara Pahlavan ◽  
Elena Mahmoudi ◽  
Maryam Barekat ◽  
Hassan Ansari ◽  
...  

Abstract Cardiovascular progenitor cells (CPCs) derived from human pluripotent stem cells (hPSCs) are proposed to be invaluable cell sources for experimental and clinical studies. This wide range of applications necessitates large-scale production of CPCs in an in vitro culture system, which enables both expansion and maintenance of these cells. In this study, we aimed to develop a defined and efficient culture medium that uses signaling factors for large-scale expansion of early CPCs, called cardiogenic mesodermal cells (CMCs), which were derived from hPSCs. Chemical screening resulted in a medium that contained a reproducible combination of three factors (A83-01, bFGF, and CHIR99021) that generated 1014 CMCs after 10 passages without the propensity for tumorigenicity. Expanded CMCs retained their gene expression pattern, chromosomal stability, and differentiation tendency through several passages and showed both the safety and possible cardio-protective potentials when transplanted into the infarcted rat myocardium. These CMCs were efficiently cryopreserved for an extended period of time. This culture medium could be used for both adherent and suspension culture conditions, for which the latter is required for large-scale CMC production. Taken together, hPSC-derived CMCs exhibited self-renewal capacity in our simple, reproducible, and defined medium. These cells might ultimately be potential, promising cell sources for cardiovascular studies.


Catalysts ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 433 ◽  
Author(s):  
Si-si Xie ◽  
Lingyun Zhu ◽  
Xin-yuan Qiu ◽  
Chu-shu Zhu ◽  
Lv-yun Zhu

Monoterpenes are commonly applied as pharmaceuticals and valuable chemicals in various areas. The bioproduction of valuable monoterpenes in prokaryotic microbial hosts, such as E. coli, has progressed considerably thanks to the development of different outstanding approaches. However, the large-scale production of monoterpenes still presents considerable limitations. Thus, process development warrants further investigations. This review discusses the endogenous methylerythritol-4-phosphate-dependent pathway engineering and the exogenous mevalonate-dependent isoprenoid pathway introduction, as well as the accompanied optimization of rate-limiting enzymes, metabolic flux, and product toxicity tolerance. We suggest further studies to focus on the development of systematical, integrational, and synthetic biological strategies in light of the inter disciplines at the cutting edge. Our review provides insights into the current advances of monoterpene bioengineering and serves as a reference for future studies to promote the industrial production of valuable monoterpenes.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sarawut Tontapha ◽  
Pikaned Uppachai ◽  
Vittaya Amornkitbamrung

Dye-sensitized solar cells (DSSCs) have been developed as a promising photovoltaic cell type in recent decades because of their low cost, environmental friendliness, ease of fabrication, and suitability for a wide range of indoor and outdoor applications, especially under diverse shaded and low-light condition. They are typically composed of three main components: a transparent conducting oxide (TCO) substrate-based working electrode with wide-bandgap semiconductors and dye sensitizer molecules, an electrolytic mediator based on redox couple species, and a TCO-based counter electrode consisting of catalyst materials. The development of intrinsic and functional organic, inorganic, metal oxide, composite, and carbon-based materials has been intensively studied to enhance the efficiency of DSSCs. A simple and low-cost fabrication process that uses natural products is also considered essential for further large-scale production. In this article, we review the fabrication of various functional materials and their effects on DSSC performance.


2001 ◽  
Vol 11 (2) ◽  
pp. 279-288 ◽  
Author(s):  
Tom DeGomez ◽  
Michael R. Wagner

Robinia L. (locust) species are among the most widely planted tree species in the world because they are ornamentally attractive, drought tolerant, fast growing, fix nitrogen, have very hard durable wood, and are adaptable to many sites and climates. Recent taxonomic analysis indicates there are four species, black locust (R. pseudoacacia L.); bristly locust (R. hispida L.); clammy locust (R. viscosa Vent.); and new mexican locust (R. neomexicana A. Gray). All four species originate in the southern United States and northern Mexico. Many horticultural cultivars are available. Locusts are tolerant of a wide range of soil types so long as there is good drainage, adequate moisture, and it is not very clayey. The environmental tolerance of locust makes it an excellent candidate for horticultural uses and for future breeding and selection to enhance its many desirable traits. It is easy to propagate via seed, root cuttings, soft- or hardwood cuttings, budding/grafting, or tissue culture. Locust has indeterminate growth. Spacing of plants in plantations is critical for the production of multiple products including high value timber. Locust is known for its ability to withstand drought conditions however at the cost of leaf shedding. Black locust contributes high levels of nitrogen to the soil from nitrogen fixing bacterial symbiosis. The major drawback to large-scale production of black locust in its native range is the damage that occurs from the locust borer (Megacyllene robiniae Forster). When planted outside the range of the locust borer it can be grown successfully as landscape specimen trees and as trees large enough for lumber production when varieties with straight trunks are grown. Damage from locust leaf miner (Odontata dorsalis Thunberg) can greatly detract from the trees ornamental qualities. Its most common use is as a site reclamation species. The tree is also used in honey production. The wood is highly decay resistant and is greatly valued for poles and posts. The wood is extremely hard and easy to work making it highly desirable for many construction uses.


2020 ◽  
Vol 42 (4) ◽  
pp. 34-39
Author(s):  
Michael J. Stephenson ◽  
Anne Osbourn

Nature has long served as a rich source of structurally diverse small organic molecules with medicinally relevant biological activities. Despite the historical success of these so-called natural products, the enthusiasm of big pharma to explore these compounds as leads in drug design has waxed and waned. A major contributor to this is their often inherent structural complexity. Such compounds are difficult (often impossible) to access synthetically, a hurdle that can stifle lead development and hinder sustainable large-scale production of promising leads for clinical evaluation. However, in recent years, an emerging synergy between synthetic biology and natural product chemistry offers the potential for a renaissance in our ability to access natural products for drug discovery and development. Advances in genome sequencing, bioinformatics and the maturing of heterologous expression platforms are increasing, enabling the study, and ultimately, the manipulation of plant biosynthetic pathways. The triterpenes are one of the most structurally diverse families of natural products and arguably one of the most underrepresented in the clinic. The plant kingdom is the richest source of triterpene diversity, with >20,000 triterpenes reported so far. Transient expression of genes for candidate enzymes and pathways in amenable plant species is emerging as a powerful and rapid means of investigating and harnessing the plant enzymes involved in generating this diversity. Such platforms also have the potential to serve as production systems in their own right, with the possibility of upscaling these discoveries into commercially useful products using the same overall basic procedure. Ultimately, the carbon source for generation of high-value compounds in plants is photosynthesis. Therefore, we could, with the help of plants, be producing new medicines out of sunlight and ‘thin air’ in green factories in the not too distant future.


Author(s):  
Jyoti Singh ◽  
Mahesh S. Bhadane ◽  
Vikas Dubey ◽  
Sanjay Daga Dhole ◽  
Jairam Manam ◽  
...  

The chapter provides useful information about synthesis and characterization of dysprosium doped oxide and fluoride-based phosphors such as SrGd2O4, CaSO4, and CaF2. Various techniques (e.g., acid-recrystallization, chemical co-precipitation, and homogenous precipitation cum auto-combustion methods) were adopted to synthesize these phosphors for large-scale production. All the prepared phosphors were characterized by x-ray diffraction analysis, scanning electron microscopy, and transmission electron microscopy techniques. The thermoluminescence (TL) studies were performed after different irradiation sources such as gamma rays, thermal neutrons, and low energy ions (H, Ar, and N), respectively. Linear dose responses were observed in a wide range of doses for all the samples. Various trapping parameters, namely order of kinetics, activation energy, and frequency factors, were calculated by using computerized glow curve deconvolution (CGCD) method.


2020 ◽  
Vol 11 (4) ◽  
pp. 7980-7984
Author(s):  
Ranganathan K ◽  
Muruganantham V

The branches of science like Nano medicine, Nano technology, Nano chemistry and Nano science are a few of those departments that have the word 'nano' in their name and were frequently published in books and journals and became familiar to the public and the research professionals too. It was an emerging science in the 20th century and is the trend currently. It is not a single isolated technique or method that is applicable in one field, but it is multi-dimensional and is applied in various fields considering the advantages. Its arena ranges from the synthesis, designs, large scale production and potential application of nano-sized materials. They are the systems of a matrix of drug carriers that are uniformly dispersed in the polymeric membranes. This review concentrates on the methods of preparation of nano particles, evaluation methods, advantages and applications of nano particles in medicine. Nanotechnology mostly provides better drug delivery in order to transfer into the smaller parts of the body. This is mostly implemented to enter the ultrathin areas in the body. So, the drugs such as genetic medicine can easily permeated into the cell walls to produce maximum growth within a few more years. The doctors are paid by the patients. The patients who are receiving this therapy shows better bioavailability, decreased drug toxicity, lesser cost of treatment, and extend the life of proprietary drugs.


2020 ◽  
Vol 20 (10) ◽  
pp. 6525-6531
Author(s):  
Majid Mostaghelchi ◽  
Jani Kotakoski ◽  
Christian Rentenberger ◽  
Christian L. Lengauer

The wide range of actual and potential applications of nanoparticles, highlight the necessity of a reliable production method for both quality and quantity of the products. Mechanical attrition is one of the first well-known techniques used to produce nanoparticles. However, these approaches have been restricted to produce uniform particles below the critical size of 15 nm because of the attrition balance limit. This paper introduces the magnetite–silicate raw material of a Kiruna-type ore deposit as a novel precursor, which enables the production of small iron oxide nanoparticles below the critical size by mechanical attrition. X-ray fluorescence (XRF), powder X-ray diffractometry (pXRD), dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used for characterization of the precursor and obtained nanoparticles. The results indicate that the particles with a mean diameter of 10.7(2.7) nm consist of mainly less than one crystallite. The significant size reduction below the attrition balance limit can be attributed to the quartz content of the raw material, which operated as supporting micro-balls for transferring the energy during the milling process.


Sign in / Sign up

Export Citation Format

Share Document