scholarly journals Trehalose alleviates high‐temperature stress in Pleurotus ostreatus by affecting central carbon metabolism

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhi-Yu Yan ◽  
Meng-Ran Zhao ◽  
Chen-Yang Huang ◽  
Li-Jiao Zhang ◽  
Jin-Xia Zhang

Abstract Background Trehalose, an intracellular protective agent reported to mediate defense against many stresses, can alleviate high-temperature-induced damage in Pleurotus ostreatus. In this study, the mechanism by which trehalose relieves heat stress was explored by the addition of exogenous trehalose and the use of trehalose-6-phosphate synthase 1 (tps1) overexpression transformants. Results The results suggested that treatment with exogenous trehalose or overexpression of tps1 alleviated the accumulation of lactic acid under heat stress and downregulated the expression of the phosphofructokinase (pfk) and pyruvate kinase (pk) genes, suggesting an ameliorative effect of trehalose on the enhanced glycolysis in P. ostreatus under heat stress. However, the upregulation of hexokinase (hk) gene expression by trehalose indicated the involvement of the pentose phosphate pathway (PPP) in heat stress resistance. Moreover, treatment with exogenous trehalose or overexpression of tps1 increased the gene expression level and enzymatic activity of glucose-6-phosphate dehydrogenase (g6pdh) and increased the production of both the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), confirming the effect of trehalose on alleviating oxidative damage by enhancing PPP in P. ostreatus under heat stress. Furthermore, treatment with exogenous trehalose or overexpression of tps1 ameliorated the decrease in the oxygen consumption rate (OCR) caused by heat stress, suggesting a relationship between trehalose and mitochondrial function under heat stress. Conclusions Trehalose alleviates high-temperature stress in P. ostreatus by inhibiting glycolysis and stimulating PPP activity. This study may provide further insights into the heat stress defense mechanism of trehalose in edible fungi from the perspective of intracellular metabolism.

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 687
Author(s):  
Chan Seop Ko ◽  
Jin-Baek Kim ◽  
Min Jeong Hong ◽  
Yong Weon Seo

High-temperature stress during the grain filling stage has a deleterious effect on grain yield and end-use quality. Plants undergo various transcriptional events of protein complexity as defensive responses to various stressors. The “Keumgang” wheat cultivar was subjected to high-temperature stress for 6 and 10 days beginning 9 days after anthesis, then two-dimensional gel electrophoresis (2DE) and peptide analyses were performed. Spots showing decreased contents in stressed plants were shown to have strong similarities with a high-molecular glutenin gene, TraesCS1D02G317301 (TaHMW1D). QRT-PCR results confirmed that TaHMW1D was expressed in its full form and in the form of four different transcript variants. These events always occurred between repetitive regions at specific deletion sites (5′-CAA (Glutamine) GG/TG (Glycine) or (Valine)-3′, 5′-GGG (Glycine) CAA (Glutamine) -3′) in an exonic region. Heat stress led to a significant increase in the expression of the transcript variants. This was most evident in the distal parts of the spike. Considering the importance of high-molecular weight glutenin subunits of seed storage proteins, stressed plants might choose shorter polypeptides while retaining glutenin function, thus maintaining the expression of glutenin motifs and conserved sites.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1099
Author(s):  
Hongyin Qi ◽  
Dingfan Kang ◽  
Weihang Zeng ◽  
Muhammad Jawad Hassan ◽  
Yan Peng ◽  
...  

Persistent high temperature decreases the yield and quality of crops, including many important herbs. White clover (Trifolium repens) is a perennial herb with high feeding and medicinal value, but is sensitive to temperatures above 30 °C. The present study was conducted to elucidate the impact of changes in endogenous γ-aminobutyric acid (GABA) level by exogenous GABA pretreatment on heat tolerance of white clover, associated with alterations in endogenous hormones, antioxidant metabolism, and aquaporin-related gene expression in root and leaf of white clover plants under high-temperature stress. Our results reveal that improvement in endogenous GABA level in leaf and root by GABA pretreatment could significantly alleviate the damage to white clover during high-temperature stress, as demonstrated by enhancements in cell membrane stability, photosynthetic capacity, and osmotic adjustment ability, as well as lower oxidative damage and chlorophyll loss. The GABA significantly enhanced gene expression and enzyme activities involved in antioxidant defense, including superoxide dismutase, catalase, peroxidase, and key enzymes of the ascorbic acid–glutathione cycle, thus reducing the accumulation of reactive oxygen species and the oxidative injury to membrane lipids and proteins. The GABA also increased endogenous indole-3-acetic acid content in roots and leaves and cytokinin content in leaves, associated with growth maintenance and reduced leaf senescence under heat stress. The GABA significantly upregulated the expression of PIP1-1 and PIP2-7 in leaves and the TIP2-1 expression in leaves and roots under high temperature, and also alleviated the heat-induced inhibition of PIP1-1, PIP2-2, TIP2-2, and NIP1-2 expression in roots, which could help to improve the water transportation and homeostasis from roots to leaves. In addition, the GABA-induced aquaporins expression and decline in endogenous abscisic acid level could improve the heat dissipation capacity through maintaining higher stomatal opening and transpiration in white clovers under high-temperature stress.


1975 ◽  
Vol 84 (3) ◽  
pp. 525-528 ◽  
Author(s):  
I. C. Onwueme ◽  
S. A. Adegoroye

SUMMARYSeeds of Amaranthus, melon, cowpea and tomato were planted in moist soil at 1, 4 or 7·5 cm depth and subjected to a heat stress of 45 °C for 10 h on the day of sowing (day 0), 1 day after sowing or 2 days after sowing. Seedling emergence was retarded by heat stress, the most drastic retardation being due to heat stress on day 1 for cowpea and tomato, day 2 for melon, and day 0 for Amaranthus. Emergence also decreased with increasing depth of sowing. The interaction of depth and heat stress was also significant in all cases, such that the delay in emergence due to heat stress tended to be greater with increasing depth of sowing. The agronomic significance of the results is discussed.


2020 ◽  
Author(s):  
S MukeshSankar ◽  
C. Tara Satyavathi ◽  
Sharmistha Barthakur ◽  
S.P Singh ◽  
Roshan Kumar ◽  
...  

AbstractEnvironmental stresses negatively influence survival, biomass and grain yield of most crops. Towards functionally clarifying the role of heat responsive genes in Pearl millet under high temperature stress, the present study were carried out using semi quantitative RT- PCR for transcript expression profiling of hsf and hsps in 8 different inbred lines at seedling stage, which was earlier identified as thermo tolerant/susceptible lines through initial screening for thermo tolerance using membrane stability index among 38 elite genotypes. Transcript expression pattern suggested existence of differential response among different genotypes in response to heat stress in the form of accumulation of heat shock responsive gene transcripts. Genotypes WGI 126, TT-1 and MS 841B responded positively towards high temperature stress for transcript accumulation for both Pgcp 70 and Pghsf and also had better growth under heat stress, whereas PPMI 69 showed the least responsiveness to transcript induction supporting the membrane stability index data for scoring thermotolerance, suggesting the efficacy of transcript expression profiling as a molecular based screening technique for identification of thermotolerant genes and genotypes at particular crop growth stages. As to demonstrate this, a full length cDNA of Pghsp 16.97 was cloned from the thermotolerant cultivar, WGI 126 and characterized for thermotolerance. The results of demonstration set forth the transcript profiling for heat tolerant genes can be a very useful technique for high throughput screening of tolerant genotypes at molecular level from large cultivar collections at seedling stage.


2019 ◽  
Vol 13 ((04) 2019) ◽  
pp. 578-587 ◽  
Author(s):  
Muhammed Alsamir ◽  
Nabil Ahmad ◽  
Vivi Arief ◽  
Tariq Mahmood ◽  
Richard Trethowan

Tomato is a mild season crop and high temperature stress impacts productivity negatively. However, the development of cultivars with improved heat tolerance is possible as genetic variability has been consistently reported. This study aimed to identify candidate genes that impact various traits under heat stress. Genome-wide association studies (GWAS) were conducted on a diverse set of 144 tomato genotypes collected from various germplasm centers and breeding programs. The genotypes were grown under control and heat stress in poly tunnels having mean temperatures of 30°C and 45°C for two seasons and phenotypic data were collected on seven agro-physiological traits. All individuals were genotyped withthe80K DArTseq platform using 31237 SNP markers. Data were analysed using a mixed model based on restricted maximum likelihood (REML). Pattern analysis of the phenotypic data showed five primary clusters each with genotypes from multiple origins. Based on the genotypic data, three wild tomato genotypes showed a degree of un-relatedness with the other materials as they were distantly located from the rest of the genotypes in the scatter plot. Control treatment data were used to ascertain markers that are exclusively important under high temperature stress. A large number of markers were significantly associated with various traits under heat stress. These included strong marker associations for number of inflorescence/plant (IPP), number of flowers/inflorescence (FPI), fresh fruit weight (FFrW), and electrolyte leakage (EL). High association with EL was found due to two SNPs 7858523|F|0-25:G>A-25:G>A and 4705224|F|0-60:C>G-60:C>G located on Chr 6. Other less pronounced marker-trait associations were observed for plant dry weight (PDW), and number of fruit/plant (FrPP).


2020 ◽  
Vol 47 (5) ◽  
pp. 440 ◽  
Author(s):  
Syed Adeel Zafar ◽  
Amjad Hameed ◽  
Muhammad Ashraf ◽  
Abdus Salam Khan ◽  
Zia-ul- Qamar ◽  
...  

Climatic variations have increased the occurrence of heat stress during critical growth stages, which negatively affects grain yield in rice. Plants adapt to harsh environments, and particularly high-temperature stress, by regulating their physiological and biochemical processes, which are key tolerance mechanisms. The identification of heat-tolerant rice genotypes and reliable selection indices are crucial for rice improvement programs. Here, we evaluated the response of a rice mutant population for high-temperature stress at the seedling and reproductive stages based on agronomic, physiological and molecular indices. Estimates of variance components revealed significant differences (P < 0.001) among genotypes, treatments and their interactions for almost all traits. The principal component analysis showed significant diversity among genotypes and traits under high-temperature stress. The mutant HTT-121 was identified as the most heat-tolerant mutant with higher grain yield, panicle fertility, cell membrane thermo-stability (CMTS) and antioxidant enzyme levels under heat stress. Various seedling-based morpho-physiological traits (leaf fresh weight, relative water contents, malondialdehyde, CMTS) and biochemical traits (superoxide dismutase, catalase and hydrogen peroxide) explained variations in grain yield that could be used as selection indices for heat tolerance in rice during early growth. Notably, heat-sensitive mutants accumulated reactive oxygen species, reduced catalase activity and upregulated OsSRFP1 expression under heat stress, suggesting their key roles in regulating heat tolerance in rice. The heat-tolerant mutants identified in this study could be used in breeding programs and to develop mapping populations to unravel the underlying genetic architecture for heat-stress adaptability.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2644
Author(s):  
Yin Luo ◽  
Yanyang Xie ◽  
Weiqiang Li ◽  
Maohuan Wei ◽  
Tian Dai ◽  
...  

High temperature stress seriously limits the yield and quality of wheat. Trehalose, a non-reducing disaccharide, has been shown involved in regulating plant responses to a variety of environmental stresses. This study aimed to explore the molecular regulatory network of exogenous trehalose to improve wheat heat tolerance through RNA-sequencing technology and physiological determination. The physiological data and RNA-seq showed that trehalose reduced malondialdehyde content and relative conductivity in wheat roots, and affecting the phenylpropane biosynthesis, starch and sucrose metabolism, glutathione metabolism, and other pathways. Our results showed that exogenous trehalose alleviates the oxidative damage caused by high temperature, coordinating the effect of wheat on heat stress by re-encoding the overall gene expression, but two wheat varieties showed different responses to high temperature stress after trehalose pretreatment. This study preliminarily revealed the effect of trehalose on gene expression regulation of wheat roots under high temperature stress, which provided a reference for the study of trehalose.


2021 ◽  
Vol 12 ◽  
Author(s):  
Amrit Lamichaney ◽  
Ashok K. Parihar ◽  
Kali K. Hazra ◽  
Girish P. Dixit ◽  
Pradip K. Katiyar ◽  
...  

The apparent climatic extremes affect the growth and developmental process of cool-season grain legumes, especially the high-temperature stress. The present study aimed to investigate the impacts of high-temperature stress on crop phenology, seed set, and seed quality parameters, which are still uncertain in tropical environments. Therefore, a panel of 150 field pea genotypes, grouped as early (n = 88) and late (n = 62) maturing, were exposed to high-temperature environments following staggered sowing [normal sowing time or non-heat stress environment (NHSE); moderately late sowing (15 days after normal sowing) or heat stress environment-I (HSE-I); and very-late sowing (30 days after normal sowing) or HSE-II]. The average maximum temperature during flowering was about 22.5 ± 0.17°C for NHSE and increased to 25.9 ± 0.11°C and 30.6 ± 0.19°C in HSE-I and HSE-II, respectively. The average maximum temperature during the reproductive period (RP) (flowering to maturity) was in the order HSE-II (33.3 ± 0.03°C) > HSE-I (30.5 ± 0.10°C) > NHSE (27.3 ± 0.10°C). The high-temperature stress reduced the seed yield (24–60%) and seed germination (4–8%) with a prominent effect on long-duration genotypes. The maximum reduction in seed germination (>15%) was observed in HSE-II for genotypes with >115 days maturity duration, which was primarily attributed to higher ambient maximum temperature during the RP. Under HSEs, the reduction in the RP in early- and late-maturing genotypes was 13–23 and 18–33%, suggesting forced maturity for long-duration genotypes under late-sown conditions. The cumulative growing degree days at different crop stages had significant associations (p < 0.001) with seed germination in both early- and late-maturing genotypes; and the results further demonstrate that an extended vegetative period could enhance the 100-seed weight and seed germination. Reduction in seed set (7–14%) and 100-seed weight (6–16%) was observed under HSEs, particularly in HSE-II. The positive associations of 100-seed weight were observed with seed germination and germination rate in the late-maturing genotypes, whereas in early-maturing genotypes, a negative association was observed for 100-seed weight and germination rate. The GGE biplot analysis identified IPFD 11-5, Pant P-72, P-1544-1, and HUDP 11 as superior genotypes, as they possess an ability to produce more viable seeds under heat stress conditions. Such genotypes will be useful in developing field pea varieties for quality seed production under the high-temperature environments.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2110
Author(s):  
Kuan-Hung Lin ◽  
Tse-Yen Lin ◽  
Chun-Wei Wu ◽  
Yu-Sen Chang

High-temperature stress is a major risk to fresh-market Salvia production, and heat intolerance is a major constraint in sage cultivation, particularly during the hot summer season. Previously, we investigated heat tolerance in five common-market cultivars of sage plants using leaf relative injury (RI) values and found that S. elegans Vahl (SE) and S. officinalis L. (SO) were the most and least heat-tolerant species, respectively. The exogenous applications of salicylic acid (SA) and calcium chloride (CaCl2) to alleviate heat stress in various species have been extensively studied, but reports of the effects of SA and CaCl2 treatments on the heat tolerance of sage plants are scarce. The objective of this study was to investigate how SA and CaCl2 affect the physiology and morphology of SE and SO plants under high-temperature conditions. Potted plants were pretreated with SA (0, 100, 200, 400, and 800 μM) and CaCl2 (0, 5, 10, and 15 mM), alone and combined, exposed to 55 °C and 80% humidity for 30 min, then placed in an environment-controlled chamber at 30°C for three days and evaluated for changes in phenotypic appearance, RI, spectral reflectance, and chlorophyll fluorescence indices at different time intervals. Plants watered without chemical solutions were used as controls. Our results show that the growth of SO plants pretreated with SA and CaCl2 was more robust, compared with control plants, which were considerably affected by heat stress, resulting in brown, withered leaves and defoliation. The effects of the combined applications of SA (100 μM) and CaCl2 (5 mM) to SO plants were superior to control plants in increasing values of soil-plant analysis development (SPAD), normalized difference vegetation index (NDVI), and the maximal quantum yield of photosystemII photochemistry (Fv/Fm), while reducing RI%. Furthermore, SO plants exhibited higher SPAD and Fv/Fm values and lower RI% than SE plants in combined treatments at all time intervals after heat stress, implying that different genotypes displayed variations in their SPAD, Fv/Fm, and RI%. Thus, a combined treatment of 100 μM of SA and 5 mM of CaCl2 is effective and beneficial to plant appearance and ability to ameliorate heat stress. These indices can be used as indicators to characterize the physiology of these plants and applied on a commercial scale for informing the development of rapid and precise management practices on bedded sage plants grown in plant factories to achieve maximum market benefit.


Sign in / Sign up

Export Citation Format

Share Document