scholarly journals Construction of a single nucleotide variant score-related gene-based prognostic model in hepatocellular carcinoma: analysis of multi-independent databases and validation in vitro

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yu-Jie Xu ◽  
Min-Ke He ◽  
Shuang Liu ◽  
Li-Chang Huang ◽  
Xiao-Yun Bu ◽  
...  

Abstract Background The accumulation of single nucleotide variants (SNVs) and the emergence of neoantigens can affect tumour proliferation and the immune microenvironment. However, the SNV-related immune microenvironment characteristics and key genes involved in hepatocellular carcinoma (HCC) are still unclear. We aimed to evaluate differences in the SNV-related immune microenvironment, construct a prognostic model and validate the key genes in vitro. Methods The categories of samples were defined by the expression of SNV score-related genes to evaluate the differences in mutational features, immune environment and prognosis. The survival model was constructed with survival-associated genes and verified in two independent test datasets. RCAN2, the key gene screened out for biofunction, was validated in vitro. Results IC2, among the three integrated clusters (IC1, IC2, IC3) classified by the 82 SNV score-related genes, was distinct from the rest in SNV score and immune cell infiltration, showing a better prognosis. Seven prognostic markers, HTRA3, GGT5, RCAN2, LGALS3, CXCL1, CLEC3B, and CTHRC1, were screened to construct a prognostic model. The survival model distinguished high-risk patients with poor prognoses in three independent datasets (log-rank P < 0.0001, 0.011, and 0.0068, respectively) with acceptable sensitivity and specificity. RCAN2 was inversely correlated with NK cell infiltration, and knockdown of RCAN2 promoted proliferation in HCC. Conclusions This study revealed the characteristics of the HCC SNV-associated subgroup and screened seven latent markers for their accuracy of prognosis. Additionally, RCAN2 was preliminarily proven to influence proliferation in HCC and it had a close relationship with NK cell infiltration in vitro. With the capability to predict HCC outcomes, the model constructed with seven key differentially expressed genes offers new insights into individual therapy.

2021 ◽  
Author(s):  
Jian Xu ◽  
Xiaomin Shen ◽  
Bo Zhang ◽  
Rui Su ◽  
Mingxuan Cui ◽  
...  

Purpose: To develop a LRP1B gene mutation based prognostic model for hepatocellular carcinoma (HCC) patients risk prediction. Methods: The LRP1B gene mutation rate was calculated from HCC patient samples. Meanwhile, differentially expressed genes according to LRP1B mutant were screened out for prognostic model establishment. Based on this innovative model, HCC patients were categoried into high and low-risk group. The immune status including immune cell infiltration ratio and checkpoints have been explored in two groups. The functions of LRP1B and risk factors in the model were verified using both in vivo and in vitro experiments. Results: It could be demonstrated that LRP1B was a potential negative predictor for HCC patients prognosis with high mutation frequency. The functions of LRP1B was verified with ELISA assay and Quantitative Real-time PCR method based on clinical recruited HCC participants. 11 genes displayed significant differences according to LRP1B status, which could better predict HCC patient prognosis. The functions of these genes were examined using HCC cell line HCCLM3, suggesting they played a pivotal role in determining HCC cell proliferation and apoptosis. From the immune cell infiltration ratio analysis, there was a significant difference in the infiltration degree of 7 types of immune cells and 2 immune checkpoints between high and low-risk HCC patients. Conclusion: This study hypothesized a potential prognostic biomarker and developed a novel LRP1B mutation-associated prognostic model for hepatocellular carcinoma, which provided a systematic reference for future understanding of clinical research.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3583
Author(s):  
Stefania Mantovani ◽  
Stefania Varchetta ◽  
Dalila Mele ◽  
Matteo Donadon ◽  
Guido Torzilli ◽  
...  

Natural killer (NK) cells play a pivotal role in cancer immune surveillance, and activating the receptor/ligand interaction may contribute to control the development and evolution of hepatocellular carcinoma (HCC). We investigated the role of the natural killer group 2 member D (NKG2D) activating receptor and its ligand, the major histocompatibility complex class I chain-related protein A and B (MICA/B) in patients with cirrhosis and HCC subjected to surgical resection, patients with cirrhosis and no HCC, and healthy donors (HD). The NKG2D-mediated function was determined in peripheral blood (PB), in tumor-infiltrating lymphocytes (NK-TIL), and in matched surrounding liver tissue (NK-LIL). A group of patients treated with sorafenib because of clinically advanced HCC was also studied. A humanized anti-MICA/B monoclonal antibody (mAb) was used in in vitro experiments to examine NK cell-mediated antibody-dependent cellular cytotoxicity. Serum concentrations of soluble MICA/B were evaluated by ELISA. IL-15 stimulation increased NKG2D-dependent activity which, however, remained dysfunctional in PB NK cells from HCC patients, in line with the reduced NKG2D expression on NK cells. NK-TIL showed a lower degranulation ability than NK-LIL, which was restored by IL-15 stimulation. Moreover, in vitro IL-15 stimulation enhanced degranulation and interferon-γ production by PB NK from patients at month one of treatment with sorafenib. Anti-MICA/B mAb associated with IL-15 was able to induce PB NK cytotoxicity for primary HCC cells in HD and patients with HCC, who also showed NK-TIL degranulation for autologous primary HCC cells. Our findings highlight the key role of the NKG2D-MICA/B axis in the regulation of NK cell responses in HCC and provide evidence in support of a potentially important role of anti-MICA/B mAb and IL-15 stimulation in HCC immunotherapy.


2015 ◽  
Vol 33 (3_suppl) ◽  
pp. 308-308
Author(s):  
Bo Hyun Kim ◽  
Yeon-Su Lee ◽  
Byung Chul Kim ◽  
Aesun Shin ◽  
Jin Sook Kim ◽  
...  

308 Background: Reliable biomarkers are required to predict patient response to sorafenib. We attempted to investigate genomic variations associated with responsiveness to sorafenib treatment in patients with unresectable hepatocellular carcinoma (HCC) and their functional relevance. Methods: We obtained blood samples from 4 strong and 3 poor responders to sorafenib treatment and subjected these samples to whole-genome analysis. Next, we performed validation tests for candidate single-nucleotide polymorphisms (SNPs) in the samples of 174 HCC patients who were treated with sorafenib, followed by in vitro functional analysis and in silico analyses of candidate SNPs. Results: On average, 90 gigabases/sample was generated at ~34X sequencing depth. In total, 1813 genomic variations were perfectly matched to sorafenib responses in the clinical data; 708 were located within regions for sorafenib-target genes or drug absorption, distribution, metabolism, and excretion (ADME)-related genes—36 within the coding regions and 6 identified as non-synonymous single-nucleotide variants from 4 ADME-related genes (ABCB1, FMO3, MUSK, and SLC15A2), which potentially cause functional alterations. Validation tests of 174 patients confirmed sequencing results and revealed that patients with the C/C genotype for rs2257212 in SCL15A2 displayed higher risk for cancer progression than did patients with C/T or T/T genotypes (HR: 2.18; 95% CI, 1.15–4.15; P = 0.018). In vitro functional analysis revealed that cells harboring C/C genotype for this SNP displayed lower response to sorafenib treatment than did cells harboring the T/T genotype. Structural prediction analysis revealed change in protein phosphorylation levels, potentially affecting sorafenib-associated enzymatic activity. Conclusions: SLC15A2 could be a robust biomarker of response to sorafenib treatment in HCC patients.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e13529-e13529
Author(s):  
Kaicheng Wang ◽  
Suxia Lin ◽  
Xue Hou ◽  
Yongdong Liu ◽  
Meichen Li ◽  
...  

e13529 Background: Thymomas and thymic carcinomas which uniformly known as thymic epithelial tumors (TETs) are rare intrathoracic malignancies and a limited studies have been reported addressing the molecular biology and immune discrepancy. The main purpose of this study was to depict the genomic and transcriptomic landscape of thymomas and thymic carcinomas, as well as elucidate the differentiated immune microenvironment. Methods: Totally 15 thymomas and 7 thymic carcinomas patients were enrolled from January 2014 to July 2018. Treatment-naïve tissue samples were collected, and we also obtained matched peripheral blood mononucleocytes as negative control. DNA and RNA were co-extracted and performed with whole exon and transcriptome sequencing. The immune cell infiltration scores were estimated using ssGSEA algorithm. Results: Exome sequencing revealed that GTF2I mutation occurred in all of type A thymomas but was absent in the aggressive subtypes. The median tumor mutation burden of thymomas was 0.12/Mb, significantly lower than thymic carcinomas (median: 1.02/Mb, p = 0.001). Copy number variation was more common in thymic carcinomas than thymomas (83.3% vs 9.1%, p = 0.005). Top mutational signatures enriched in both thymomas and thymic carcinomas included age and Aristolochic acid exposure, while the APOBEC signature was more common in thymomas than thymic carcinomas (81.8% vs 16.7%, p = 0.03). As a confirmed immune escape event, loss of heterozygosity of human leukocyte antigen was identified in 9.1% of thymomas and 50% of thymic carcinomas. Via unsupervised clustering of immune infiltration, all tissue samples were classified into high- and low-infiltration subgroups. Remarkably, up to 71.4% of samples from thymic carcinomas and only 6.7% of samples from thymomas were defined as low immune cell infiltration. In consideration of specific immune cell types, macrophage ( p = 0.01) and neutrophil ( p = 0.02) were enriched in thymic carcinomas while CD56+ NK cell ( p = 0.005) was enriched in thymomas, indicating the evidential discrepancy about immune cell infiltration between two subtypes of TETs. Conclusions: This study elucidated the molecular and immune microenvironment discrepancy between two subtypes of TETs. From molecular perspective, thymomas and thymic carcinomas are entirely different diseases with different etiology and characterized by distinct immune infiltration, and thus should be managed with disparate therapeutic strategies. Findings in this study may also be useful in future targets development and exploration of immunotherapies in TETs.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Sarah M. Bray ◽  
Lazar Vujanovic ◽  
Lisa H. Butterfield

Immunotherapy of cancer must promote antitumor effector cells for tumor eradication as well as counteract immunoregulatory mechanisms which inhibit effectors. Immunologic therapies of cancer are showing promise, including dendritic cell-(DC-) based strategies. DC are highly malleable antigen-presenting cells which can promote potent antitumor immunity as well as tolerance, depending on the environmental signals received. Previously, we tested a peptide-pulsed DC vaccine to promote Alpha-fetoprotein (AFP-) specific anti-tumor immunity in patients with hepatocellular carcinoma (HCC), and reported on the CD8+T cell responses induced by this vaccine and the clinical trial results. Here, we show that the peptide-loaded DC enhanced NK cell activation and decreased regulatory T cells (Treg) frequencies in vaccinated HCC patients. We also extend these data by testing several forms of DC vaccinesin vitroto determine the impact of antigen loading and maturation signals on both NK cells and Treg from healthy donors and HCC patients.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiyan Tan ◽  
Fuyang Cao ◽  
Feiyu Tang ◽  
Can Lu ◽  
Qiaoyan Yu ◽  
...  

The majority of diffuse large B-cell lymphoma (DLBCL) patients develop relapsed or refractory disease after standard ruxolitinib, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) chemotherapy, which is partly related to a dysregulated tumor immune microenvironment. However, how the infiltration of immune cells is appropriately regulated is poorly understood. Herein, we show that the E3 ubiquitin ligase Trim35 is expressed at low levels in human DLBCL tissues. We also show that overexpression of Trim35 suppresses DLBCL cell proliferation and correlates with inferior survival in DLBCL patients. Our mechanistic study shows that Trim35 functions as an E3 ligase to mediate the ubiquitination and degradation of CLOCK, a key regulator of circadian rhythmicity. High expression of Trim35 correlates with NK cell infiltration in DLBCL, partly due to the degradation of CLOCK. Consistently, patients with high expression of CLOCK show poor overall survival. Overall, these findings suggest that Trim35 suppresses the progression of DLBCL by modulating the tumor immune microenvironment, indicating that it may be a promising diagnostic and prognostic biomarker in DLBCL.


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Yuanyuan Feng ◽  
Xinfang Tang ◽  
Changcheng Li ◽  
Ying Su ◽  
Xiaoyu Wang ◽  
...  

Objective. ARID1A has been discovered as a potential cancer biomarker. But its role in hepatocellular carcinoma (HCC) is subject to considerable dispute. Methods. The relationship between ARID1A and clinical factors was investigated. Clinicopathological variables related to overall survival in HCC subjects were identified using Cox and Kaplan–Meier studies. The connection between immune infiltrating cells and ARID1A expression was investigated using the tumor Genome Atlas (TCGA) dataset for gene set enrichment analysis (GSEA). Finally, a cell experiment was used to confirm it. Results. The gender and cancer topography (T) categorization of HCC were linked to increased ARID1A expression. Participants with advanced levels of ARID1A expression had a worse prognosis than someone with lower levels. ARID1A was shown to be a risk indicator of overall survival on its own. ARID1A expression is inversely proportional to immune cell infiltration. In vitro, decreasing ARID1A expression substantially slowed the cell cycle and decreased HCC cell proliferation, migration, and invasion. Conclusion. The expression of ARID1A could be used to predict the outcome of HCC. It is closely related to tumor immune cell infiltration.


2021 ◽  
Author(s):  
Jian Xu ◽  
Xiaomin Shen ◽  
Bo Zhang ◽  
Rui Su ◽  
Mingxuan Cui ◽  
...  

Abstract Purpose: To develop a LRP1B gene mutation based prognostic model for hepatocellular carcinoma (HCC) patients risk prediction. Methods: The LRP1B gene mutation rate was calculated from HCC patient samples. Meanwhile, differentially expressed genes according to LRP1B mutant were screened out for prognostic model establishment. Based on this innovative model, HCC patients were categoried into high and low-risk group. The immune status including immune cell infiltration ratio and checkpoints have been explored in two groups. Results: It can be shown here 11 genes demonstrate significant differences according to LRP1B status, which can better predict HCC patient prognosis. The accuracy of the model prediction is evaluated and approved by the AUC value. From the immune cell infiltration ratio analysis, there is a significant difference in the infiltration degree of 7 types of immune cells and 2 immune checkpoints between high and low-risk HCC patients. Meanwhile, LRP1B was tested as a prognostic marker in clinic to predict different stages for HCC with satisfied accurancy. Conclusion: This study has explored a potential prognostic biomarker and developed a novel LRP1B mutation-associated prognostic model for hepatocellular carcinoma, which provides a systematic reference for future better understanding of clinical research.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xigang Xia ◽  
Hao Zhang ◽  
Peng Xia ◽  
Yimin Zhu ◽  
Jie Liu ◽  
...  

BackgroundHigh glycolysis efficiency in tumor cells can promote tumor growth. lncRNAs play an important role in the proliferation, metabolism and migration of cancer cells, but their regulation of tumor glycolysis is currently not well researched.MethodsWe analyzed the co-expression of glycolysis-related genes and lncRNAs in The Cancer Genome Atlas (TCGA) database to screen glycolysis-related lncRNAs. Further prognostic analysis and differential expression analysis were performed. We further analyzed the relationship between lncRNAs and tumor immune infiltration. Since WAC antisense RNA 1 (WAC-AS1) had the greatest effect on the prognosis among all screened lncRNAs and had a larger coefficient in the prognostic model, we chose WAC-AS1 for further verification experiments and investigated the function and mechanism of action of WAC-AS1 in hepatocellular carcinoma.ResultsWe screened 502 lncRNAs that have co-expression relationships with glycolytic genes based on co-expression analysis. Among them, 112 lncRNAs were abnormally expressed in liver cancer, and 40 lncRNAs were related to the prognosis of patients. Eight lncRNAs (WAC-AS1, SNHG3, SNHG12, MSC-AS1, MIR210HG, PTOV1-AS1, AC145207.5 and AL031985.3) were used to established a prognostic model. Independent prognostic analysis (P&lt;0.001), survival analysis (P&lt;0.001), receiver operating characteristic (ROC) curve analysis (AUC=0.779) and clinical correlation analysis (P&lt;0.001) all indicated that the prognostic model has good predictive power and that the risk score can be used as an independent prognostic factor (P&lt;0.001). The risk score and lncRNAs in the model were found to be related to a variety of immune cell infiltration and immune functions. WAC-AS1 was found to affect glycolysis and promote tumor proliferation (P&lt;0.01). WAC-AS1 affected the expression of several glycolysis-related genes (cAMP regulated phosphoprotein 19 (ARPP19), CHST12, MED24 and KIF2A) (P&lt;0.01). Under hypoxic conditions, WAC-AS1 regulated ARPP19 by sponging miR-320d to promote glucose uptake and lactate production (P&lt;0.01).ConclusionWe constructed a model based on glycolysis-related lncRNAs to evaluate the prognostic risk of patients. The risk score and lncRNAs in the model were related to immune cell infiltration. WAC-AS1 can regulate ARPP19 to promote glycolysis and proliferation by sponging miR-320d.


Sign in / Sign up

Export Citation Format

Share Document