scholarly journals Combination of light-driven co-delivery of chemodrugs and plasmonic-induced heat for cancer therapeutics using hybrid protein nanocapsules

2019 ◽  
Vol 17 (1) ◽  
Author(s):  
E. Villar-Alvarez ◽  
A. Cambón ◽  
A. Pardo ◽  
L. Arellano ◽  
A. V. Marcos ◽  
...  

Abstract Background Improving the water solubility of hydrophobic drugs, increasing their accumulation in tumor tissue and allowing their simultaneous action by different pathways are essential issues for a successful chemotherapeutic activity in cancer treatment. Considering potential clinical application in the future, it will be promising to achieve such purposes by developing new biocompatible hybrid nanocarriers with multimodal therapeutic activity. Results We designed and characterised a hybrid nanocarrier based on human serum albumin/chitosan nanoparticles (HSA/chitosan NPs) able to encapsulate free docetaxel (DTX) and doxorubicin-modified gold nanorods (DOXO-GNRs) to simultaneously exploit the complementary chemotherapeutic activities of both antineoplasic compounds together with the plasmonic optical properties of the embedded GNRs for plasmonic-based photothermal therapy (PPTT). DOXO was assembled onto GNR surfaces following a layer-by-layer (LbL) coating strategy, which allowed to partially control its release quasi-independently release regarding DTX under the use of near infrared (NIR)-light laser stimulation of GNRs. In vitro cytotoxicity experiments using triple negative breast MDA-MB-231 cancer cells showed that the developed dual drug encapsulation approach produces a strong synergistic toxic effect to tumoral cells compared to the administration of the combined free drugs; additionally, PPTT enhances the cytostatic efficacy allowing cell toxicities close to 90% after a single low irradiation dose and keeping apoptosis as the main cell death mechanism. Conclusions This work demonstrates that by means of a rational design, a single hybrid nanoconstruct can simultaneously supply complementary therapeutic strategies to treat tumors and, in particular, metastatic breast cancers with good results making use of its stimuli-responsiveness as well as its inherent physico-chemical properties.

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1691
Author(s):  
Mostafa Yusefi ◽  
Hui-Yin Chan ◽  
Sin-Yeang Teow ◽  
Pooneh Kia ◽  
Michiele Lee-Kiun Soon ◽  
...  

Cellulose and chitosan with remarkable biocompatibility and sophisticated physiochemical characteristics can be a new dawn to the advanced drug nano-carriers in cancer treatment. This study aims to synthesize layer-by-layer bionanocomposites from chitosan and rice straw cellulose encapsulated 5-Fluorouracil (CS-CF/5FU BNCs) using the ionic gelation method and the sodium tripolyphosphate (TPP) cross-linker. Data from X-ray and Fourier-transform infrared spectroscopy showed successful preparation of CS-CF/5FU BNCs. Based on images of scanning electron microscopy, 48.73 ± 1.52 nm was estimated for an average size of the bionanocomposites as spherical chitosan nanoparticles mostly coated rod-shaped cellulose reinforcement. 5-Fluorouracil indicated an increase in thermal stability after its encapsulation in the bionanocomposites. The drug encapsulation efficiency was found to be 86 ± 2.75%. CS-CF/5FU BNCs triggered higher drug release in a media simulating the colorectal fluid with pH 7.4 (76.82 ± 1.29%) than the gastric fluid with pH 1.2 (42.37 ± 0.43%). In in vitro cytotoxicity assays, cellulose fibers, chitosan nanoparticles and the bionanocomposites indicated biocompatibility towards CCD112 normal cells. Most promisingly, CS-CF/5FU BNCs at 250 µg/mL concentration eliminated 56.42 ± 0.41% of HCT116 cancer cells and only 8.16 ± 2.11% of CCD112 normal cells. Therefore, this study demonstrates that CS-CF/5FU BNCs can be considered as an eco-friendly and innovative nanodrug candidate for potential colorectal cancer treatment.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 261
Author(s):  
Wei Mao ◽  
Sol Lee ◽  
Ji Un Shin ◽  
Hyuk Sang Yoo

Surface initiated atom transfer radical polymerization (SI-ATRP) documented a simple but efficient technique to grow a dense polymer layer on any surface. Gold nanoparticles (AuNPs) give a broad surface to immobilize sulfhyryl group-containing initiators for SI-ATRP; in addition, AuNPs are the major nanoparticulate carriers for delivery of anti-cancer therapeutics, since they are biocompatible and bioinert. In this work, AuNPs with a disulfide initiator were polymerized with sulfoethyl methacrylate by SI-ATRP to decorate the particles with anionic corona, and branched polyethyeleneimine (PEI) and siRNA were sequentially layered onto the anionic corona of AuNP by electrostatic interaction. The in vitro anti-cancer effect confirmed that AuNP with anionic corona showed higher degrees of apoptosis as well as suppression of the oncogene expression in a siRNA dose-dependent manner. The in vivo study of tumor-bearing nude mice revealed that mice treated with c-Myc siRNA-incorporated AuNPs showed dramatically decreased tumor size in comparison to those with free siRNA for 4 weeks. Furthermore, histological examination and gene expression study revealed that the decorated AuNP significantly suppressed c-Myc expression. Thus, we envision that the layer-by-layer assembly on the anionic brushes can be potentially used to incorporate nucleic acids onto metallic particles with high transfection efficiency.


2011 ◽  
Vol 83 (11) ◽  
pp. 2027-2040 ◽  
Author(s):  
Neralakere Ramanna Ravikumara ◽  
Basavaraj Madhusudhan

In this study, tamoxifen citrate-loaded chitosan nanoparticles (tamoxcL-ChtNPs) and tamoxifen citrate-free chitosan nanoparticles (tamoxcF-ChtNPs) were prepared by an ionic gelation (IG) method. The physicochemical properties of the nanoparticles were analyzed for particle size, zeta (ζ) potential, and other characteristics using photon correlation spectroscopy (PCS), zeta phase analysis light scattering (PALS), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and differential scanning calorimetry (DSC). The variation in particle size was assessed by changing the concentration of chitosan, pentasodium tripolyphosphate (TPP), and the pH of the solution. The optimized tamoxcL-ChtNPs showed mean diameter of 187 nm, polydispersity of 0.125, and ζ-potential of +19.1 mV. The encapsulation efficiency (EE) of tamoxifen citrate (tamoxc) increased at higher concentrations, and release of tamoxc from the chitosan matrix displayed controlled biphasic behavior. Those tamoxcL-ChtNPs tested for chemosensitivity showed dose- and time-dependent antiproliferative activity of tamoxc. Further, tamoxcL-ChtNPs were found to be hemocompatible with human red blood cells (RBCs) and safe by in vitro cytotoxicity tests, suggesting that they offer promise as drug delivery systems in therapy.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1110
Author(s):  
Blerina Shkodra ◽  
Adrian T. Press ◽  
Antje Vollrath ◽  
Ivo Nischang ◽  
Stephanie Schubert ◽  
...  

Bisindolylmaleimide I (BIM-I) is a competitive pan protein kinase C inhibitor with anti-inflammatory and anti-metastatic properties, suggested to treat inflammatory diseases and various cancer entities. However, despite its therapeutic potential, BIM-I has two major drawbacks, i.e., it has a poor water solubility, and it binds the human ether-à-go-go-related gene (hERG) ion channels, potentially causing deadly arrhythmias. In this case, a targeted delivery of BIM-I is imperative to minimize peripheral side effects. To circumvent these drawbacks BIM-I was encapsulated into nanoparticles prepared from poly(lactic-co-glycolic acid) (PLGA) functionalized by the near-infrared dye DY-635. DY-635 served as an active targeting moiety since it selectively binds the OATP1B1 and OATP1B3 transporters that are highly expressed in liver and cancer cells. PLGA-DY-635 (BIM-I) nanoparticles were produced by nanoprecipitation and characterized using dynamic light scattering, analytical ultracentrifugation, and cryogenic transmission electron microscopy. Particle sizes were found to be in the range of 20 to 70 nm, while a difference in sizes between the drug-loaded and unloaded particles was observed by all analytical techniques. In vitro studies demonstrated that PLGA-DY-635 (BIM-I) NPs prevent the PKC activation efficiently, proving the efficacy of the inhibitor after its encapsulation, and suggesting that BIM-I is released from the PLGA-NPs. Ultimately, our results present a feasible formulation strategy that improved the cytotoxicity profile of BIM-I and showed a high cellular uptake in the liver as demonstrated in vivo by intravital microscopy investigations.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4418
Author(s):  
Hyun-Chul Kim ◽  
Eunjoo Kim ◽  
Se Guen Lee ◽  
Sung Jun Lee ◽  
Sang Won Jeong ◽  
...  

Reactive oxygen species (ROS)-responsive nanocarriers have received considerable research attention as putative cancer treatments because their tumor cell targets have high ROS levels. Here, we synthesized a miktoarm amphiphile of dithioketal-linked ditocopheryl polyethylene glycol (DTTP) by introducing ROS-cleavable thioketal groups as linkers between the hydrophilic and hydrophobic moieties. We used the product as a carrier for the controlled release of doxorubicin (DOX). DTTP has a critical micelle concentration (CMC) as low as 1.55 μg/mL (4.18 × 10−4 mM), encapsulation efficiency as high as 43.6 ± 0.23% and 14.6 nm particle size. The DTTP micelles were very responsive to ROS and released their DOX loads in a controlled manner. The tocopheryl derivates linked to DTTP generated ROS and added to the intracellular ROS in MCF-7 cancer cells but not in HEK-293 normal cells. In vitro cytotoxicity assays demonstrated that DOX-encapsulated DTTP micelles displayed strong antitumor activity but only slightly increased apoptosis in normal cells. This ROS-triggered, self-accelerating drug release device has high therapeutic efficacy and could be a practical new strategy for the clinical application of ROS-responsive drug delivery systems.


2019 ◽  
Vol 19 (13) ◽  
pp. 1560-1576 ◽  
Author(s):  
Manjula Vinayak ◽  
Akhilendra K. Maurya

:The spread of metastatic cancer cell is the main cause of death worldwide. Cellular and molecular basis of the action of phytochemicals in the modulation of metastatic cancer highlights the importance of fruits and vegetables. Quercetin is a natural bioflavonoid present in fruits, vegetables, seeds, berries, and tea. The cancer-preventive activity of quercetin is well documented due to its anti-inflammatory, anti-proliferative and anti-angiogenic activities. However, poor water solubility and delivery, chemical instability, short half-life, and low-bioavailability of quercetin limit its clinical application in cancer chemoprevention. A better understanding of the molecular mechanism of controlled and regulated drug delivery is essential for the development of novel and effective therapies. To overcome the limitations of accessibility by quercetin, it can be delivered as nanoconjugated quercetin. Nanoconjugated quercetin has attracted much attention due to its controlled drug release, long retention in tumor, enhanced anticancer potential, and promising clinical application. The pharmacological effect of quercetin conjugated nanoparticles typically depends on drug carriers used such as liposomes, silver nanoparticles, silica nanoparticles, PLGA (Poly lactic-co-glycolic acid), PLA (poly(D,L-lactic acid)) nanoparticles, polymeric micelles, chitosan nanoparticles, etc.:In this review, we described various delivery systems of nanoconjugated quercetin like liposomes, silver nanoparticles, PLGA (Poly lactic-co-glycolic acid), and polymeric micelles including DOX conjugated micelles, metal conjugated micelles, nucleic acid conjugated micelles, and antibody-conjugated micelles on in vitro and in vivo tumor models; as well as validated their potential as promising onco-therapeutic agents in light of recent updates.


Cancers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 222 ◽  
Author(s):  
Yusuf Haggag ◽  
Kyle Matchett ◽  
Robert Falconer ◽  
Mohammad Isreb ◽  
Jason Jones ◽  
...  

The delivery of anticancer agents to their subcellular sites of action is a significant challenge for effective cancer therapy. Peptides, which are integral to several oncogenic pathways, have significant potential to be utilised as cancer therapeutics due to their selectivity, high potency and lack of normal cell toxicity. Novel Ras protein-Regulator of chromosome condensation 1 (Ran-RCC1) inhibitory peptides designed to interact with Ran, a novel therapeutic target in breast cancer, were delivered by entrapment into polyethylene glycol-poly (lactic-co-glycolic acid) PEG-PLGA polymeric nanoparticles (NPs). A modified double emulsion solvent evaporation technique was used to optimise the physicochemical properties of these peptide-loaded biodegradable NPs. The anti-cancer activity of peptide-loaded NPs was studied in vitro using Ran-expressing metastatic breast (MDA-MB-231) and lung cancer (A549) cell lines, and in vivo using Solid Ehrlich Carcinoma-bearing mice. The anti-metastatic activity of peptide-loaded NPs was investigated using migration, invasion and colony formation assays in vitro. A PEG-PLGA-nanoparticle encapsulating N-terminal peptide showed a pronounced antitumor and anti-metastatic action in lung and breast cancer cells in vitro and caused a significant reduction of tumor volume and associated tumor growth inhibition of breast cancer model in vivo. These findings suggest that the novel inhibitory peptides encapsulated into PEGylated PLGA NPs are delivered effectively to interact and deactivate Ran. This novel Ran-targeting peptide construct shows significant potential for therapy of breast cancer and other cancers mediated by Ran overexpression.


Pharmaceutics ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 26 ◽  
Author(s):  
Elisabetta Mazzotta ◽  
Selene De Benedittis ◽  
Antonio Qualtieri ◽  
Rita Muzzalupo

The clinical efficacy of methotrexate (MTX) is limited by its poor water solubility, its low bioavailability, and the development of resistance in cancer cells. Herein, we developed novel folate redox-responsive chitosan (FTC) nanoparticles for intracellular MTX delivery. l-Cysteine and folic acid molecules were selected to be covalently linked to chitosan in order to confer it redox responsiveness and active targeting of folate receptors (FRs). NPs based on these novel polymers could possess tumor specificity and a controlled drug release due to the overexpression of FRs and high concentration of reductive agents in the microenvironment of cancer cells. Nanoparticles (NPs) were prepared using an ionotropic gelation technique and characterized in terms of size, morphology, and loading capacity. In vitro drug release profiles exhibited a glutathione (GSH) dependence. In the normal physiological environment, NPs maintained good stability, whereas, in a reducing environment similar to tumor cells, the encapsulated MTX was promptly released. The anticancer activity of MTX-loaded FTC-NPs was also studied by incubating HeLa cells with formulations for various time and concentration intervals. A significant reduction in viability was observed in a dose- and time-dependent manner. In particular, FTC-NPs showed a better inhibition effect on HeLa cancer cell proliferation compared to non-target chitosan-based NPs used as control. The selective cellular uptake of FTC-NPs via FRs was evaluated and confirmed by fluorescence microscopy. Overall, the designed NPs provide an attractive strategy and potential platform for efficient intracellular anticancer drug delivery.


2009 ◽  
Vol 08 (01n02) ◽  
pp. 175-179 ◽  
Author(s):  
MAN-YI WONG ◽  
GIGI N. C. CHIU

Quercetin is a naturally occurring cytotoxic compound where clinical use has been limited by its low water solubility. Therefore, liposomes were explored for solubilizing quercetin. Liposomes composed of DPPC (1,2 dipalmitoyl-sn-glycerol-3-phosphocholine)/DSPE-PEG2000 (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)2000])/quercetin (90:5:5 mole ratio) incorporated quercetin efficiently at 100.9 ± 4.6% and increased quercetin concentration in water 11.2-fold. Stability studies at storage temperature of 4°C showed that the liposomes were stable for up to 16 weeks, without any significant changes in diameters. Liposomal quercetin showed a delayed release profile and reduced quercetin degradation. In vitro cytotoxicity tests also showed that the ED50 of liposomal quercetin was 17.6 times lower than free quercetin in MDA-MB-231 breast cancer cells. In conclusion, the DPPC/DSPE-PEG-based liposomes were stable and were capable of solubilizing quercetin, preventing quercetin degradation, and increasing quercetin in vitro cytotoxicity. Hence, liposomes are a suitable nanocarrier for quercetin.


Sign in / Sign up

Export Citation Format

Share Document