scholarly journals Epigenetic Effects of Nanomaterials and Nanoparticles

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Marta Pogribna ◽  
George Hammons

AbstractThe rise of nanotechnology and widespread use of engineered nanomaterials in everyday human life has led to concerns regarding their potential effect on human health. Adverse effects of nanomaterials and nanoparticles on various molecular and cellular alterations have been well-studied. In contrast, the role of epigenetic alterations in their toxicity remains relatively unexplored. This review summarizes current evidence of alterations in cytosine DNA methylation and histone modifications in response to nanomaterials and nanoparticles exposures in vivo and in vitro. This review also highlights existing knowledge gaps regarding the role of epigenetic alterations in nanomaterials and nanoparticles toxicity. Additionally, the role of epigenetic changes as potential translational biomarkers for detecting adverse effects of nanomaterials and nanoparticles is discussed.

Planta Medica ◽  
2021 ◽  
Author(s):  
Giulia Martinelli ◽  
Andrea Magnavacca ◽  
Marco Fumagalli ◽  
Mario DellʼAgli ◽  
Stefano Piazza ◽  
...  

AbstractThe use of Cannabis sativa is currently recognized to ease certain types of chronic pain, reduce chemotherapy-induced nausea, and improve anxiety. Nevertheless, few studies highlighted the therapeutic potential of C. sativa extracts and related phytocannabinoids for a variety of widespread skin disorders including acne, atopic dermatitis, psoriasis, pruritus, and pain. This review summarized the current evidence on the effects of phytocannabinoids at the cutaneous level through the collection of in vitro, in vivo, and clinical studies published on PubMed, Scopus, Embase, and Web of Science until October 2020. Phytocannabinoids have demonstrated potential anti-inflammatory, antioxidant, anti-aging, and anti-acne properties by various mechanisms involving either CB1/2-dependent and independent pathways. Not only classical immune cells, but also several skin-specific actors, such as keratinocytes, fibroblasts, melanocytes, and sebocytes, may represent a target for phytocannabinoids. Cannabidiol, the most investigated compound, revealed photoprotective, antioxidant, and anti-inflammatory mechanisms at the cutaneous level, while the possible impact on cell differentiation, especially in the case of psoriasis, would require further investigation. Animal models and pilot clinical studies supported the application of cannabidiol in inflammatory-based skin diseases. Also, one of the most promising applications of non-psychotropic phytocannabinoids is the treatment of seborrheic disorders, especially acne. In conclusion, the incomplete knowledge of the role of the endocannabinoid system in skin disorders emerged as an important limit for pharmacological investigations. Moreover, the limited studies conducted on C. sativa extracts suggested a higher potency than single phytocannabinoids, thus stimulating new research on phytocannabinoid interaction.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii302-iii302
Author(s):  
Cody Nesvick ◽  
Charles Day ◽  
Liang Zhang ◽  
Edward Hinchcliffe ◽  
David Daniels

Abstract Diffuse midline glioma (DMG) is a lethal brain tumor that typically occurs in children. Numerous studies have demonstrated the central role of the H3K27M mutation and secondary loss of H3K27 trimethylation (H3K27me3) in DMG tumorigenesis. Understanding how the H3K27M mutation alters the epigenetic landscape of the cell is necessary for revealing molecular targets that are critical to tumorigenesis. To investigate the epigenetic effects of H3K27M mutation in DMG, we developed revertant DMG cell lines with the mutant methionine residue reverted to wildtype (i.e., M27K). Revertant cells were analyzed for epigenetic changes and phenotypic differences in vitro and in vivo. H3M27K DMG cells grew in culture but displayed diminished proliferative capacity. H3M27K cells demonstrated total loss of H3K27M expression and restored trimethylation of H3K27 and H3K4. Furthermore, consistent with the hypothesis that the H3K27M mutation impacts H3 phosphorylation via expression of Aurora Kinase during mitosis, H3M27K cells demonstrated reduced expression of both Aurora Kinase A and phosphorylation of H3 serine residues 10 and 28. In line with the critical role of H3S10 phosphorylation in chromatin segregation, H3M27K cells also demonstrated restored chromosome segregation compared to H3K27M cells. In vivo data will be discussed. Revertance of the H3K27M mutation reduces tumorigenesis in DMG tumors. Isogenic H3M27K cells display reversal of key epigenetic changes associated with oncogenesis in DMG. The revertant H3M27K DMG model is a useful tool to investigate the downstream epigenetic reprogramming specific to H3K27M mutation in these tumors.


2021 ◽  
Vol 20 (1) ◽  
pp. 25-30
Author(s):  
Vasilios Pergialiotis ◽  
Anastasia Prodromidou ◽  
Evangelia Dimitroulia ◽  
Dimitrios Loutradis

Altogether, Assisted Reproductive Techniques (ART) are likely to cause some epigenetic changes in the offspring, which might consist the molecular basis of complex characteristics and diseases. The present review contributes a large biochemical dataset of a well-defined group of pre- pubertal in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) conceived children in order to detect the potential effect in the offspring’s health. Additionally, the relevant usefulness of metabolomics and proteomics are also investigated. The outcomes indicate early insulin resistance in ICSI-offspring which can set the basis for further research in the field so as to identify the respective pathophysiological pathways and mechanisms of action. The data support that metabolomics may unravel metabolic variances before they become clinically or biochemically evident, underlining its utility in the ART research.


NAR Cancer ◽  
2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Hwa-Ryeon Kim ◽  
Juhye Yim ◽  
Hye-Been Yoo ◽  
Seung Eon Lee ◽  
Sumin Oh ◽  
...  

Abstract Cancer cells utilize epigenetic alterations to acquire autonomous capabilities for tumor maintenance. Here, we show that pancreatic ductal adenocarcinoma (PDA) cells utilize super-enhancers (SEs) to activate the transcription factor EVI1 (ecotropic viral integration site 1) gene, resulting in activation of an EVI1-dependent transcription program conferring PDA tumorigenesis. Our data indicate that SE is the vital cis-acting element to maintain aberrant EVI1 transcription in PDA cells. Consistent with disease progression and inferior survival outcomes of PDA patients, we further show that EVI1 upregulation is a major cause of aggressive tumor phenotypes. Specifically, EVI1 promotes anchorage-independent growth and motility in vitro and enhances tumor propagation in vivo. Mechanistically, EVI1-dependent activation of tumor-promoting gene expression programs through the stepwise configuration of the active enhancer chromatin attributes to these phenotypes. In sum, our findings support the premise that EVI1 is a crucial driver of oncogenic transcription programs in PDA cells. Further, we emphasize the instructive role of epigenetic aberrancy in establishing PDA tumorigenesis.


Molecules ◽  
2019 ◽  
Vol 24 (12) ◽  
pp. 2272 ◽  
Author(s):  
Salehi ◽  
Sharopov ◽  
Boyunegmez Tumer ◽  
Ozleyen ◽  
Rodríguez‐Pérez ◽  
...  

Symphytum species belongs to the Boraginaceae family and have been used for centuries for bone breakages, sprains and rheumatism, liver problems, gastritis, ulcers, skin problems, joint pain and contusions, wounds, gout, hematomas and thrombophlebitis. Considering the innumerable potentialities of the Symphytum species and their widespread use in the world, it is extremely important to provide data compiling the available literature to identify the areas of intense research and the main gaps in order to design future studies. The present review aims at summarizing the main data on the therapeutic indications of the Symphytum species based on the current evidence, also emphasizing data on both the efficacy and adverse effects. The present review was carried out by consulting PubMed (Medline), Web of Science, Embase, Scopus, Cochrane Database, Science Direct and Google Scholar (as a search engine) databases to retrieve the most updated articles on this topic. All articles were carefully analyzed by the authors to assess their strengths and weaknesses, and to select the most useful ones for the purpose of review, prioritizing articles published from 1956 to 2018. The pharmacological effects of the Symphytum species are attributed to several chemical compounds, among them allantoin, phenolic compounds, glycopeptides, polysaccharides and some toxic pyrrolizidine alkaloids. Not less important to highlight are the risks associated with its use. In fact, there is increasing consumption of over-the-counter drugs, which when associated with conventional drugs can cause serious and even fatal adverse events. Although clinical trials sustain the folk topical application of Symphytum species in musculoskeletal and blunt injuries, with minor adverse effects, its antimicrobial potency was still poorly investigated. Further studies are needed to assess the antimicrobial spectrum of Symphytum species and to characterize the active molecules both in vitro and in vivo.


2018 ◽  
Vol 24 (24) ◽  
pp. 2862-2869 ◽  
Author(s):  
Fatima Ismail Hassan ◽  
Tina Didari ◽  
Fazlullah Khan ◽  
Mojtaba Mojtahedzadeh ◽  
Mohammad Abdollahi

Background: Sepsis is among the leading causes of death with no specific etiology or treatment. Increase in health burden in terms of cost, morbidity, and mortality is the reason behind the continuous search for different treatment modalities which involve several targets/approach and one of them includes the involvement of epigenetics in sepsis. Objective: This review was carried out to explain the epigenetic alterations involved in sepsis, as it affects the disease progression, diagnosis, and treatment. Methods: Information used in this review was obtained from different databases including PUBMED, SCOPUS, Web of Science, and EMBASE. Keywords were used as search terms. Result: In this review, we provided a concise overview of the significant role of epigenetic alterations in sepsis pathophysiology as it relates to disease progression, diagnosis and treatment derived from in vitro, in vivo, and human studies. These mechanisms affected various targets and pathways involved in sepsis modulation, which correlates with morbidity and mortality. Change in DNA methylation pattern, histone modification, and microRNA regulation has been shown in sepsis models to silence or activate pro-inflammatory genes such as TNF-α and interleukins, anti-oxidant enzymes, and many signaling pathways. Drugs that target these pathways have proven effective in sepsis treatment. Conclusion: Epigenetic processes involve specific enzymes detected in the blood and other body fluids which can potentially serve as diagnostic, therapeutic, as well as prognostic tools in sepsis. Epigenetic mechanisms can provide a highly sensitive and accurate method for sepsis diagnosis using blood and other body fluids.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5891
Author(s):  
Sofie Zehentner ◽  
Agnes T. Reiner ◽  
Christoph Grimm ◽  
Veronika Somoza

Background: Since it is known that bitter taste receptors (TAS2Rs) are expressed and functionally active in various extra-oral cells, their genetic variability and functional response initiated by their activation have become of broader interest, including in the context of cancer. Methods: A systematic research was performed in PubMed and Google Scholar to identify relevant publications concerning the role of TAS2Rs in cancer. Results: While the findings on variations of TAS2R genotypes and phenotypes and their association to the risk of developing cancer are still inconclusive, gene expression analyses revealed that TAS2Rs are expressed and some of them are predominately downregulated in cancerous compared to non-cancerous cell lines and tissue samples. Additionally, receptor-specific, agonist-mediated activation induced various anti-cancer effects, such as decreased cell proliferation, migration, and invasion, as well as increased apoptosis. Furthermore, the overexpression of TAS2Rs resulted in a decreased tumour incidence in an in vivo study and TAS2R activation could even enhance the therapeutic effect of chemotherapeutics in vitro. Finally, higher expression levels of TAS2Rs in primary cancerous cells and tissues were associated with an improved prognosis in humans. Conclusion: Since current evidence demonstrates a functional role of TAS2Rs in carcinogenesis, further studies should exploit their potential as (co-)targets of chemotherapeutics.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Shy Cian Khor ◽  
Norwahidah Abdul Karim ◽  
Wan Zurinah Wan Ngah ◽  
Yasmin Anum Mohd Yusof ◽  
Suzana Makpol

Sarcopenia is a geriatric syndrome that is characterized by gradual loss of muscle mass and strength with increasing age. Although the underlying mechanism is still unknown, the contribution of increased oxidative stress in advanced age has been recognized as one of the risk factors of sarcopenia. Thus, eliminating reactive oxygen species (ROS) can be a strategy to combat sarcopenia. In this review, we discuss the potential role of vitamin E in the prevention and treatment of sarcopenia. Vitamin E is a lipid soluble vitamin, with potent antioxidant properties and current evidence suggesting a role in the modulation of signaling pathways. Previous studies have shown its possible beneficial effects on aging and age-related diseases. Although there are evidences suggesting an association between vitamin E and muscle health, they are still inconclusive compared to other more extensively studied chronic diseases such as neurodegenerative diseases and cardiovascular diseases. Therefore, we reviewed the role of vitamin E and its potential protective mechanisms on muscle health based on previous and currentin vitroandin vivostudies.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
HM Lee ◽  
TG Ahn ◽  
CW Kim ◽  
HJ An
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document