scholarly journals An epigenome-wide association study of sex-specific chronological ageing

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Daniel L. McCartney ◽  
Futao Zhang ◽  
Robert F. Hillary ◽  
Qian Zhang ◽  
Anna J. Stevenson ◽  
...  

Abstract Background Advanced age is associated with cognitive and physical decline and is a major risk factor for a multitude of disorders. There is also a gap in life expectancy between males and females. DNA methylation differences have been shown to be associated with both age and sex. Here, we investigate age-by-sex differences in blood-based DNA methylation in an unrelated cohort of 2586 individuals between the ages of 18 and 87 years, with replication in a further 4450 individuals between the ages of 18 and 93 years. Methods Linear regression models were applied, with stringent genome-wide significance thresholds (p < 3.6 × 10−8) used in both the discovery and replication data. A second, highly conservative mixed linear model method that better controls the false-positive rate was also applied, using the same genome-wide significance thresholds. Results Using the linear regression method, 52 autosomal and 597 X-linked CpG sites, mapping to 251 unique genes, replicated with concordant effect size directions in the age-by-sex interaction analysis. The site with the greatest difference mapped to GAGE10, an X-linked gene. Here, DNA methylation levels remained stable across the male adult age range (DNA methylation by age r = 0.02) but decreased across female adult age range (DNA methylation by age r = − 0.61). One site (cg23722529) with a significant age-by-sex interaction also had a quantitative trait locus (rs17321482) that is a genome-wide significant variant for prostate cancer. The mixed linear model method identified 11 CpG sites associated with the age-by-sex interaction. Conclusion The majority of differences in age-associated DNA methylation trajectories between sexes are present on the X chromosome. Several of these differences occur within genes that have been implicated in sexually dimorphic traits.

2019 ◽  
Author(s):  
Daniel L. McCartney ◽  
Robert F. Hillary ◽  
Qian Zhang ◽  
Anna J. Stevenson ◽  
Rosie M. Walker ◽  
...  

AbstractIntroductionAdvanced age is associated with cognitive and physical decline, and is a major risk factor for a multitude of disorders including neurodegenerative diseases such as Alzheimer’s disease. There is also a gap in life-expectancy between males and females. DNA methylation differences have been shown to be associated with both age and sex. Here, we investigate age-by-sex differences in DNA methylation in an unrelated cohort of 2,586 individuals between the ages of 18 and 87 years.MethodsGenome-wide DNA methylation was measured on the Illumina HumanMethylationEPIC beadchip in a subset of unrelated individuals from the Generation Scotland cohort. Mixed linear model-based analyses were performed to investigate the relationship between DNA methylation and an interaction term between age and sex, as well as chronological age.ResultsAt a genome-wide significance level of P < 3.6 × 10−8, 14 loci were associated with the age-by-sex interaction term, the majority of which were X-linked (n = 12). Seven of these loci were annotated to genes. The site with the greatest difference mapped to GAGE10, an X-linked gene. Here, DNA methylation levels remained stable across the male adult age range (DNA methylation x age r = 0.02), but decreased across female adult age range (DNA methylation x age r = −0.61). The seven age-by-sex-associated genes were enriched among differentially-expressed genes in lung, liver, testis and blood.ConclusionThe majority of differences in age-associated DNA methylation trajectories between sexes are present on the X-chromosome. Several of these differences occur within genes which have implicated in multiple cancers, schizophrenia and systemic lupus erythematosus.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Laurent Briollais ◽  
Denis Rustand ◽  
Catherine Allard ◽  
Yanyan Wu ◽  
Jingxiong Xu ◽  
...  

Abstract Background The role of breastfeeding in modulating epigenetic factors has been suggested as a possible mechanism conferring its benefits on child development but it lacks evidence. Using extensive DNA methylation data from the ALSPAC child cohort, we characterized the genome-wide landscape of DNA methylation variations associated with the duration of exclusive breastfeeding and assessed whether these variations mediate the association between exclusive breastfeeding and BMI over different epochs of child growth. Results Exclusive breastfeeding elicits more substantial DNA methylation variations during infancy than at other periods of child growth. At the genome-wide level, 13 CpG sites in girls (miR-21, SNAPC3, ATP6V0A1, DHX15/PPARGC1A, LINC00398/ALOX5AP, FAM238C, NATP/NAT2, CUX1, TRAPPC9, OSBPL1A, ZNF185, FAM84A, PDPK1) and 2 CpG sites in boys (IL16 and NREP), mediate the association between exclusive breastfeeding and longitudinal BMI. We found enrichment of CpG sites located within miRNAs and key pathways (AMPK signaling pathway, insulin signaling pathway, endocytosis). Overall DNA methylation variation corresponding to 3 to 5 months of exclusive breastfeeding was associated with slower BMI growth the first 6 years of life compared to no breastfeeding and in a dose–response manner with exclusive breastfeeding duration. Conclusions Our study confirmed the early postnatal period as a critical developmental period associated with substantial DNA methylation variations, which in turn could mitigate the development of overweight and obesity from infancy to early childhood. Since an accelerated growth during these developmental periods has been linked to the development of sustained obesity later in life, exclusive breastfeeding could have a major role in preventing the risks of overweight/obesity and children and adults through DNA methylation mechanisms occurring early in life.


Circulation ◽  
2017 ◽  
Vol 135 (suppl_1) ◽  
Author(s):  
Xiaoling Wang ◽  
Yue Pan ◽  
Haidong Zhu ◽  
Guang Hao ◽  
Xin Wang ◽  
...  

Background: Several large-scale epigenome wide association studies on obesity-related DNA methylation changes have been published and in total identified 46 CpG sites. These studies were conducted in middle-aged and older adults of Caucasians and African Americans (AAs) using leukocytes. To what extend these signals are independent of cell compositions as well as to what extend they may influence gene expression have not been systematically investigated. Furthermore, the high prevalence of obesity comorbidities in middle-aged or older population may hide or bias obesity itself related DNA methylation changes. Methods: In this study of healthy AA youth and young adults, genome wide DNA methylation data from leukocytes were obtained from three independent studies: EpiGO study (96 obese cases vs. 92 lean controls, aged 14-21, 50% females, test of interest is obesity status), LACHY study (284 participants from general population, aged 14-18, 50% females, test of interest is BMI), and Georgia Stress and Heart study (298 participants from general population, aged 18-38, 52% females, test of interest is BMI) using the Infinium HumanMethylation450 BeadChip. Genome wide DNA methylation data from purified neutrophils as well as genome wide gene expression data from leukocytes using Illumina HT12 V4 array were also obtained for the EpiGO samples. Results: The meta-analysis on the 3 cohorts identified 76 obesity related CpG sites in leukocytes with p<1х10 -7 . Out of the 46 previously identified CpG sites, 36 can be replicated in this AA youth and young adult sample with same direction and p<0.05. Out of the 107 CpG sites including the 36 replicated ones and the 71 newly identified ones, 71 CpG sites (66%) had their relationship with obesity replicated in purified neutrophils (p<0.05). The analysis on the cis regulation of the 107 CpG sites on gene expression showed that 59 CpG sites had at least one gene within 250kb having expression difference between obese cases and lean controls. Furthermore, out of the 59 CpG sites, 6 showed significantly negative correlations and 1 showed significantly positive correlation with the differentially expressed genes. These CpG sites located in SOCS3, CISH, ABCG1, PIM3 and PTGDS genes. Conclusion: In this study of AA youth and young adults, we identified novel CpG sites associated with obesity and replicated majority of the CpG sites previously identified in middle-aged and older adults. For the first time, we showed that majority of the obesity related CpG sites identified from leukocytes are not driven by cell compositions and provided the direct link between DNA methylation-gene expression-obesity status for 7 CpG sites in 5 genes.


2020 ◽  
Vol 21 (12) ◽  
pp. 4476
Author(s):  
Marcela A S Pinhel ◽  
Natália Y Noronha ◽  
Carolina F Nicoletti ◽  
Vanessa AB Pereira ◽  
Bruno AP de Oliveira ◽  
...  

Weight regulation and the magnitude of weight loss after a Roux-en-Y gastric bypass (RYGB) can be genetically determined. DNA methylation patterns and the expression of some genes can be altered after weight loss interventions, including RYGB. The present study aimed to evaluate how the gene expression and DNA methylation of PIK3R1, an obesity and insulin-related gene, change after RYGB. Blood samples were obtained from 13 women (35.9 ± 9.2 years) with severe obesity before and six months after surgical procedure. Whole blood transcriptome and epigenomic patterns were assessed by microarray-based, genome-wide technologies. A total of 1966 differentially expressed genes were identified in the pre- and postoperative periods of RYGB. From these, we observed that genes involved in obesity and insulin pathways were upregulated after surgery. Then, the PIK3R1 gene was selected for further RT-qPCR analysis and cytosine-guanine nucleotide (CpG) sites methylation evaluation. We observed that the PI3KR1 gene was upregulated, and six DNA methylation CpG sites were differently methylated after bariatric surgery. In conclusion, we found that RYGB upregulates genes involved in obesity and insulin pathways.


2019 ◽  
Vol 40 (5) ◽  
pp. 611-623 ◽  
Author(s):  
Takeshi Makabe ◽  
Eri Arai ◽  
Takuro Hirano ◽  
Nanako Ito ◽  
Yukihiro Fukamachi ◽  
...  

Abstract The present study was performed to clarify the significance of DNA methylation alterations during endometrial carcinogenesis. Genome-wide DNA methylation analysis and targeted sequencing of tumor-related genes were performed using the Infinium MethylationEPIC BeadChip and the Ion AmpliSeq Cancer Hotspot Panel v2, respectively, for 31 samples of normal control endometrial tissue from patients without endometrial cancer and 81 samples of endometrial cancer tissue. Principal component analysis revealed that tumor samples had a DNA methylation profile distinct from that of control samples. Gene Ontology enrichment analysis revealed significant differences of DNA methylation at 1034 CpG sites between early-onset endometrioid endometrial cancer (EE) tissue (patients aged ≤40 years) and late-onset endometrioid endometrial cancer (LE) tissue, which were accumulated among ‘transcriptional factors’. Mutations of the CTNNB1 gene or DNA methylation alterations of genes participating in Wnt signaling were frequent in EEs, whereas genetic and epigenetic alterations of fibroblast growth factor signaling genes were observed in LEs. Unsupervised hierarchical clustering grouped EE samples in Cluster EA (n = 22) and samples in Cluster EB (n = 12). Clinicopathologically less aggressive tumors tended to be accumulated in Cluster EB, and DNA methylation levels of 18 genes including HOXA9, HOXD10 and SOX11 were associated with differences in such aggressiveness between the two clusters. We identified 11 marker CpG sites that discriminated EB samples from EA samples with 100% sensitivity and specificity. These data indicate that genetically and epigenetically different pathways may participate in the development of EEs and LEs, and that DNA methylation profiling may help predict tumors that are less aggressive and amenable to fertility preservation treatment.


Author(s):  
Xiangyu Luo ◽  
Joel Schwartz ◽  
Andrea Baccarelli ◽  
Zhonghua Liu

Abstract Epigenome-wide mediation analysis aims to identify DNA methylation CpG sites that mediate the causal effects of genetic/environmental exposures on health outcomes. However, DNA methylations in the peripheral blood tissues are usually measured at the bulk level based on a heterogeneous population of white blood cells. Using the bulk level DNA methylation data in mediation analysis might cause confounding bias and reduce study power. Therefore, it is crucial to get fine-grained results by detecting mediation CpG sites in a cell-type-specific way. However, there is a lack of methods and software to achieve this goal. We propose a novel method (Mediation In a Cell-type-Specific fashion, MICS) to identify cell-type-specific mediation effects in genome-wide epigenetic studies using only the bulk-level DNA methylation data. MICS follows the standard mediation analysis paradigm and consists of three key steps. In step1, we assess the exposure-mediator association for each cell type; in step 2, we assess the mediator-outcome association for each cell type; in step 3, we combine the cell-type-specific exposure-mediator and mediator-outcome associations using a multiple testing procedure named MultiMed [Sampson JN, Boca SM, Moore SC, et al. FWER and FDR control when testing multiple mediators. Bioinformatics 2018;34:2418–24] to identify significant CpGs with cell-type-specific mediation effects. We conduct simulation studies to demonstrate that our method has correct FDR control. We also apply the MICS procedure to the Normative Aging Study and identify nine DNA methylation CpG sites in the lymphocytes that might mediate the effect of cigarette smoking on the lung function.


2010 ◽  
Vol 42 (4) ◽  
pp. 355-360 ◽  
Author(s):  
Zhiwu Zhang ◽  
Elhan Ersoz ◽  
Chao-Qiang Lai ◽  
Rory J Todhunter ◽  
Hemant K Tiwari ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 653-653 ◽  
Author(s):  
Ying Qu ◽  
Andreas Lennartsson ◽  
Verena I. Gaidzik ◽  
Stefan Deneberg ◽  
Sofia Bengtzén ◽  
...  

Abstract Abstract 653 DNA methylation is involved in multiple biologic processes including normal cell differentiation and tumorigenesis. In AML, methylation patterns have been shown to differ significantly from normal hematopoietic cells. Most studies of DNA methylation in AML have previously focused on CpG islands within the promoter of genes, representing only a very small proportion of the DNA methylome. In this study, we performed genome-wide methylation analysis of 62 AML patients with CN-AML and CD34 positive cells from healthy controls by Illumina HumanMethylation450K Array covering 450.000 CpG sites in CpG islands as well as genomic regions far from CpG islands. Differentially methylated CpG sites (DMS) between CN-AML and normal hematopoietic cells were calculated and the most significant enrichment of DMS was found in regions more than 4kb from CpG Islands, in the so called open sea where hypomethylation was the dominant form of aberrant methylation. In contrast, CpG islands were not enriched for DMS and DMS in CpG islands were dominated by hypermethylation. DMS successively further away from CpG islands in CpG island shores (up to 2kb from CpG Island) and shelves (from 2kb to 4kb from Island) showed increasing degree of hypomethylation in AML cells. Among regions defined by their relation to gene structures, CpG dinucleotide located in theoretic enhancers were found to be the most enriched for DMS (Chi χ2<0.0001) with the majority of DMS showing decreased methylation compared to CD34 normal controls. To address the relation to gene expression, GEP (gene expression profiling) by microarray was carried out on 32 of the CN-AML patients. Totally, 339723 CpG sites covering 18879 genes were addressed on both platforms. CpG methylation in CpG islands showed the most pronounced anti-correlation (spearman ρ =-0.4145) with gene expression level, followed by CpG island shores (mean spearman rho for both sides' shore ρ=-0.2350). As transcription factors (TFs) have shown to be crucial for AML development, we especially studied differential methylation of an unbiased selection of 1638 TFs. The most enriched differential methylation between CN-AML and normal CD34 positive cells were found in TFs known to be involved in hematopoiesis and with Wilms tumor protein-1 (WT1), activator protein 1 (AP-1) and runt-related transcription factor 1 (RUNX1) being the most differentially methylated TFs. The differential methylation in WT 1 and RUNX1 was located in intragenic regions which were confirmed by pyro-sequencing. AML cases were characterized with respect to mutations in FLT3, NPM1, IDH1, IDH2 and DNMT3A. Correlation analysis between genome wide methylation patterns and mutational status showed statistically significant hypomethylation of CpG Island (p<0.0001) and to a lesser extent CpG island shores (p<0.001) and the presence of DNMT3A mutations. This links DNMT3A mutations for the first time to a hypomethylated phenotype. Further analyses correlating methylation patterns to other clinical data such as clinical outcome are ongoing. In conclusion, our study revealed that non-CpG island regions and in particular enhancers are the most aberrantly methylated genomic regions in AML and that WT 1 and RUNX1 are the most differentially methylated TFs. Furthermore, our data suggests a hypomethylated phenotype in DNMT3A mutated AML. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chuan Qiu ◽  
Hui Shen ◽  
Xiaoying Fu ◽  
Chao Xu ◽  
Hongwen Deng

Osteoporosis is a serious public health issue, which is mostly characterized by low bone mineral density (BMD). To search for additional genetic susceptibility loci underlying BMD variation, an effective strategy is to focus on testing of specific variants with high potential of functional effects. Single nucleotide polymorphisms (SNPs) that introduce or disrupt CpG dinucleotides (CpG-SNPs) may alter DNA methylation levels and thus represent strong candidate functional variants. Here, we performed a targeted GWAS for 63,627 potential functional CpG-SNPs that may affect DNA methylation in bone-related cells, in five independent cohorts (n=5905). By meta-analysis, 9 CpG-SNPs achieved a genome-wide significance level (p<7.86×10−7) for association with lumbar spine BMD and additional 15 CpG-SNPs showed suggestive significant (p<5.00×10−5) association, of which 2 novel SNPs rs7231498 (NFATC1) and rs7455028 (ESR1) also reached a genome-wide significance level in the joint analysis. Several identified CpG-SNPs were mapped to genes that have not been reported for association with BMD in previous GWAS, such as NEK3 and NFATC1 genes, highlighting the enhanced power of targeted association analysis for identification of novel associations that were missed by traditional GWAS. Interestingly, several genomic regions, such as NEK3 and LRP5 regions, contained multiple significant/suggestive CpG-SNPs for lumbar spine BMD, suggesting that multiple neighboring CpG-SNPs may synergistically mediate the DNA methylation level and gene expression pattern of target genes. Furthermore, functional annotation analyses suggested a strong regulatory potential of the identified BMD-associated CpG-SNPs and a significant enrichment in biological processes associated with protein localization and protein signal transduction. Our results provided novel insights into the genetic basis of BMD variation and highlighted the close connections between genetic and epigenetic mechanisms of complex disease.


Sign in / Sign up

Export Citation Format

Share Document