scholarly journals Compositional variation of the human fecal microbiome in relation to azo-reducing activity: a pilot study

Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Sara A. Zahran ◽  
Marwa Ali-Tammam ◽  
Amal E. Ali ◽  
Ramy K. Aziz

Abstract Background Through an arsenal of microbial enzymes, the gut microbiota considerably contributes to human metabolic processes, affecting nutrients, drugs, and environmental poisons. Azoreductases are a predominant group of microbiota-derived enzymes involved in xenobiotic metabolism and drug activation, but little is known about how compositional changes in the gut microbiota correlate with its azo-reducing activity. Results To this end, we used high-throughput 16S rRNA amplicon sequencing, with Illumina MiSeq, to determine the microbial community composition of stool samples from 16 adults with different azo-reducing activity. High azo-reducing activity positively correlated with the relative abundance of phylum Firmicutes (especially genera Streptococcus and Coprococcus) but negatively with phylum Bacteroidetes (especially genus Bacteroides). Typical variations in the Firmicutes-to-Bacteroidetes and Prevotella-to-Bacteroides ratios were observed among samples. Multivariate analysis of the relative abundance of key microbial taxa and other diversity parameters confirmed the Firmicutes proportion as a major variable differentiating high and non-azo-reducers, while Bacteroidetes relative abundance was correlated with azo-reduction, sex, and BMI. Conclusions This pilot study showed that stool samples with higher azo-reducing activity were enriched in Firmicutes but with relatively fewer Bacteroidetes. More samples and studies from different geographical areas are needed to bolster this conclusion. Better characterization of different azoreductase-producing gut microbes will increase our knowledge about the fate and differential human responses to azodye-containing drugs or orally consumed chemicals, thus contributing to efforts towards implementing microbiome testing in precision medicine and toxicology.

2021 ◽  
Vol 11 (4) ◽  
pp. 294
Author(s):  
Irina Grigor’eva ◽  
Tatiana Romanova ◽  
Natalia Naumova ◽  
Tatiana Alikina ◽  
Alexey Kuznetsov ◽  
...  

The last decade saw extensive studies of the human gut microbiome and its relationship to specific diseases, including gallstone disease (GSD). The information about the gut microbiome in GSD-afflicted Russian patients is scarce, despite the increasing GSD incidence worldwide. Although the gut microbiota was described in some GSD cohorts, little is known regarding the gut microbiome before and after cholecystectomy (CCE). By using Illumina MiSeq sequencing of 16S rRNA gene amplicons, we inventoried the fecal bacteriobiome composition and structure in GSD-afflicted females, seeking to reveal associations with age, BMI and some blood biochemistry. Overall, 11 bacterial phyla were identified, containing 916 operational taxonomic units (OTUs). The fecal bacteriobiome was dominated by Firmicutes (66% relative abundance), followed by Bacteroidetes (19%), Actinobacteria (8%) and Proteobacteria (4%) phyla. Most (97%) of the OTUs were minor or rare species with ≤1% relative abundance. Prevotella and Enterocossus were linked to blood bilirubin. Some taxa had differential pre- and post-CCE abundance, despite the very short time (1–3 days) elapsed after CCE. The detailed description of the bacteriobiome in pre-CCE female patients suggests bacterial foci for further research to elucidate the gut microbiota and GSD relationship and has potentially important biological and medical implications regarding gut bacteria involvement in the increased GSD incidence rate in females.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 293-294
Author(s):  
Camila S Marcolla ◽  
Benjamin Willing

Abstract This study aimed to characterize poultry microbiota composition in commercial farms using 16S rRNA sequencing. Animals raised in sanitized environments have lower survival rates when facing pathogenic challenges compared to animals naturally exposed to commensal organisms. We hypothesized that intensive rearing practices inadvertently impair chicken exposure to microbes and the establishment of a balanced gut microbiota. We compared gut microbiota composition of broilers (n = 78) and layers (n = 20) from different systems, including commercial intensive farms with and without in-feed antibiotics, organic free-range farms, backyard-raised chickens and chickens in an experimental farm. Microbial community composition of conventionally raised broilers was significantly different from antibiotic-free broilers (P = 0.012), from broilers raised outdoors (P = 0.048) and in an experimental farm (P = 0.006) (Fig1). Significant community composition differences were observed between antibiotic-fed and antibiotic-free chickens (Fig2). Antibiotic-free chickens presented higher alpha-diversity, higher relative abundance of Deferribacteres, Fusobacteria, Bacteroidetes and Actinobacteria, and lower relative abundance of Firmicutes, Clostridiales and Enterobacteriales than antibiotic-fed chickens (P < 0.001) (Fig3). Microbial community composition significantly changed as birds aged. In experimental farm, microbial community composition was significant different for 7, 21 and 35 day old broilers (P < 0.001), and alpha diversity increased from 7 to 21d (P < 0.024), but not from 21 to 35d; whereas, in organic systems, increases in alpha-diversity were observed from 7d to 21d, and from 21d to 35d (P < 0.05). Broilers and layers raised together showed no differences in microbiota composition and alpha diversity (P > 0.8). It is concluded that production practices consistently impact microbial composition, and that antibiotics significantly reduces microbial diversity. We are now exploring the impact of differential colonization in a controlled setting, to determine the impact of the microbes associated with extensively raised chickens. This study will support future research and the development of methods to isolate and introduce beneficial microbes to commercial systems.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 1171-1171
Author(s):  
Farzad Mohammadi ◽  
Emma Tolsdorf ◽  
Karine Greffard ◽  
Élodie Chotard ◽  
Jean-François Bilodeau ◽  
...  

Abstract Objectives We hypothesized that the intake of industrially originated trans-fatty acids (elaidic acid (EA trans 18: 1n-9)) and ruminant trans fatty acids (trans-palmitoleic acid (TPA t16:1 n-7)) will differentially modify gut microbiota and short-chain fatty acids (SCFA) profiles. The objective is to compare the long- and short-term effects of EA and TPA on the fecal microbiome and SCFAs profiles in mice. Methods Forty C57BL/6 mice were divided to 4 groups. Each group was given one of the following 4 formulations in the drinking water: lecithin nanovesicles, nanovesicles containing either lecithin with EA or TPA (86:14 (w/w)) or water alone (control) for 28 days with a normal fat diet. Fecal samples were collected at days 0, 7 and 28. Gut microbiota profiles were determined by 16S rRNA gene sequencing. SCFAs were measured by headspace gas chromatography coupled to a single quadrupole mass spectrometer. Baseline data (relative abundance of bacteria or levels of SCFAs) was pooled and then compared with data from day 7 or day 28 for each formulation. Results After 7 days of lecithin, 16S rRNA analysis revealed an increase in the relative abundance of Lactobacillus. After 28 days of lecithin, an increase in the relative abundance of Lactobacillus, Erysipelotrichaceae, and Enterobacteriaceae together with a decrease in Bacteroidaceae was observed. Further, a tendency to increase level of butyric acid (P = 0.053) was observed after 28 days of lecithin. After 7 days of EA, an increase in the relative abundance of Lactobacillus, whereas a decrease in the relative abundance of Parabacteroides, Bacteroides, Rumininococcaceae, Lachnospiraceae and Peptococcaceae was observed. After 7 days of TPA, results show a decreased level of isovaleric acid (P = 0.04) and valeric acid (P = 0.03). After 28 days of TPA, data demonstrates an increase in the level of butyric acid (P = 0.01) and propionic acid (P = 0.01). Water intake for 28 days decreased the level of valeric acid (P = 0.02). Conclusions Consumption of industrial and ruminant trans-fatty acids modify differentially bacterial taxa present in the gut microbiome and SCFA profiles. Funding Sources NSERC, CMDO.


2021 ◽  
Vol 5 (1) ◽  
pp. 1-7
Author(s):  
Jannaina Ferreira de Melo Vasco ◽  
Carlos A. Riedi ◽  
Camila Marconi ◽  
Keite S. Nogueira ◽  
Luiza Souza Rodrigues ◽  
...  

Differences in the clinical presentation of cystic fibrosis (CF) may be due to microbiota components and their relationship with the host’s immune system. In this pilot study, we aimed to investigate the composition of the respiratory and gut microbiota of a cohort of clinically stable children with CF, homozygous for the p.Phe508del mutation. Oropharyngeal swabs and stool samples were obtained from these children attending the CF referral clinics at the Hospital of Clinics, Federal University Paraná (CHC – UFPR). Oropharyngeal and gut microbiota were assessed by V3-V4 sequencing of the 16S ribosomal RNA, and bioinformatics analyses were performed using a proprietary pipeline. We identified a total of 456 bacterial taxa belonging to 164 genera, of which 65 (39.6 %) were common to both the respiratory and gastrointestinal tracts. Taxa from eight genera dominated more than 75 % of the microbial composition of both the niches. Among these dominant taxa, only Prevotella spp. were common to both the sites. Overall, the respiratory and gut microbiota were homogeneous among all the patients. Longitudinal studies targeting a larger cohort are important for an improved understanding of how the composition of bacterial communities is related to changes in the clinical status of CF


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Ilaria Carafa ◽  
Domenico Masuero ◽  
Urska Vrhovsek ◽  
Giovanni Bittante ◽  
Elena Franciosi ◽  
...  

AbstractConjugated linoleic acids (CLAs) show a number of putative health-promoting activities including anti-carcinogenic, anti-adipogenic, anti-diabetogenic, anti-inflammatory and antioxidant actions. CLAs are naturally produced by ruminal bacteria and several studies demonstrate that various lactobacilli and bifidobacteria are also able to produce CLAs in vitro from linoleic acid (LA). However, the ability of the human gut microbiota to produce CLA is less extensively studied. Our hypothesis is that the human gut microbiota is able to convert LA to CLA, and that the readily fermentable fiber inulin would positively modulate the growth of CLA-producing bacteria and, consequently increase the CLA content in the intestine.The capability of the faecal microbiota from five healthy donors to produce CLA was tested in anaerobic batch cultures for 48 hours at pH 5.5 and 6.5. Test treatments were linoleic acid (LA; 1 mg/mL) + bovine serum albumin (BSA; 0.2 mg/mL), and LA (1 mg/mL) + BSA (0.2 mg/mL) + inulin (1%, w/v) compared to a control BSA (0.2 mg/mL) fermentation. The microbial composition was analyzed 0, 24 and 48 hours after starting the fermentation by 16S rRNA gene Illumina MiSeq sequencing (V3-V4 region). CLAs were quantified by Ultra performance liquid chromatography - tandem mass spectrometer (UPLC-MS/MS) and bi-dimensional gas chromatography (GC x GC).The inclusion of LA + BSA + inulin at pH 5.5 significantly increased the relative abundance of Collinsella aerofaciens (p < 0.05), and tended to increase the relative abundance of bifidobacteria. LA + BSA + inulin at both pH 5.5 and 6.5 reduced the relative abundance of Parabacteroides, Bilophila, Clostridia and Enterobacteriaceae (p < 0.05). The concentration of CLA, in particular the isomer cis9,trans11 C18:2, was significantly higher in the LA + BSA + inulin group at pH 5.5 after 24 and 48 hours fermentation.The data show that the treatment LA + BSA + inulin at pH 5.5 induce substantial changes in microbiota composition, including bifidogenesis and CLA production in a human intestinal microbiota model. The changes of relative abundance detected are consistent with changes in gut bacteria previously linked to human health. Collinsella aerofaciens has been reported for reducing bloating, in particular in subjects suffering from irritable bowel syndrome, while Clostridia, Bilophila and Enterobacteriaceae causes human infections. In addition, the increase of bifidobacteria and LAB, which have previously been shown in vitro to produce CLA, may also be involved in CLA production under simulated cecal microbiome. These preclinical observations warrant confirmation in suitably designed animal and human mechanistic studies.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 6045-6045 ◽  
Author(s):  
Marc Oliva Bernal ◽  
Pierre H.H. Schneeberger ◽  
Rachel Taylor ◽  
Victor Rey ◽  
Aaron Richard Hansen ◽  
...  

6045 Background: The ROMA LA-OPSCC ( NCT03759730) study prospectively evaluated the oral and gut microbiota in a single-centre cohort of LA-OPSCC patients (pts) receiving chemoradiotherapy (CRT). Methods: LA-OPSCC pts treated with definitive CRT (IMRT plus single-agent cisplatin) were eligible. Oral swabs over the tumor site and stool samples were collected at baseline and end of CRT (EOT). Taxonomic profiles were generated by 16S rRNA sequencing. ANOSIM/Kruskal-Wallis tests were used to identify differences between baseline and EOT samples. Results: A total of 96 samples were collected from 24 evaluable pts (100% compliance). Baseline characteristics: median age = 61 (range, 50-71); smoking status current/former/never = 5/11/8; HPV+/- = 23/1; stage I/II/III/IVA = 7/7/9/1; use of antibiotics = 12 pts. In oral swabs, decreased Shannon diversity ( p< 0.01) and changes in abundance (adjusted p value: q< 0.05) of multiple taxa including Prevotella, Veillonella, and Streptococcuswere observed at EOT vs baseline. Stool diversity did not differ between baseline and EOT ( p= 0.42), but abundance of Ruminoccocus and Roseburia decreased ( q< 0.05). CRT-associated changes remained significant when controlled for stage, smoking, antibiotics, cisplatin dose and mucositis grade ( p< 0.01). In HPV+ pts, stage I-II baseline oral swabs had higher relative abundance of Clostridium IV ( p= 0.02) and Escherichia ( p= 0.04) than stage III, which had higher Fusobacterium ( p =0.03) and Gemella ( p< 0.01). Relative abundance of Actinobacteria (p < 0.01), Proteobacteria (p < 0.01) and Firmicutes (p = 0.03) was higher in stool from stage III pts . Akkermansia muciniphila was present in 57% of the stage I-II stool samples, and 11% in stage III ( p= 0.04). Conclusions: CRT in LA-OPSCC is associated with increases in potentially pathogenic genera in the oropharynx. HPV+ stage III disease was associated with higher Fusobacterium in the oropharynx, which has been implicated in tumor metastases, and with decreased prevalence of the immunotherapy-response-associated species Akkermansia in stool. These preliminary observations suggest an opportunity for the evaluation of IO based therapies or manipulation of the gut microbiota in this patient population. Clinical trial information: NCT03759730.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2210
Author(s):  
Connor E. Owens ◽  
Haley G. Huffard ◽  
Alexandra I. Nin-Velez ◽  
Jane Duncan ◽  
Chrissy L. Teets ◽  
...  

Body systems once thought sterile at birth instead have complex and sometimes abundant microbial ecosystems. However, relationships between dam and calf microbial ecosystems are still unclear. The objectives of this study were to (1) characterize the various maternal and calf microbiomes during peri-partum and post-partum periods and (2) examine the influence of the maternal microbiome on calf fecal microbiome composition during the pre-weaning phase. Multiparous Holstein cows were placed in individual, freshly bedded box stalls 14 d before expected calving. Caudal vaginal fluid samples were collected approximately 24 h before calving and dam fecal, oral, colostrum, and placenta samples were collected immediately after calving. Calf fecal samples were collected at birth (meconium) and 24 h, 7 d, 42 d, and 60 d of age. Amplicons covering V4 16S rDNA regions were generated using DNA extracted from all samples and were sequenced using 300 bp paired end Illumina MiSeq sequencing. Spearman rank correlations were performed between genera in maternal and calf fecal microbiomes. Negative binomial regression models were created for genera in calf fecal samples at each time point using genera in maternal microbiomes. We determined that Bacteroidetes dominated the calf fecal microbiome at all time points (relative abundance ≥42.55%) except for 24 h post-calving, whereas Proteobacteria were the dominant phylum (relative abundance = 85.10%). Maternal fecal, oral, placental, vaginal, and colostrum microbiomes were significant predictors of calf fecal microbiome throughout pre-weaning. Results indicate that calf fecal microbiome inoculation and development may be derived from various maternal sources. Maternal microbiomes could be used to predict calf microbiome development, but further research on the environmental and genetic influences is needed.


2022 ◽  
Vol 9 ◽  
Author(s):  
Meng Li ◽  
Xiaoming Wang ◽  
Xingjie Lin ◽  
Xiuju Bian ◽  
Rui Jing ◽  
...  

Background: Henoch-Schönlein purpura, now called immunoglobulin A (IgA) vasculitis, is a common autoimmune disease in children, its association with gut microbiota composition remains unknown.Methods: The collected cases were divided into three groups: G1 group of simple skin type, G2 group with no digestive tract expression, G3 group of mixed digestive tract, and C group of healthy children. The fecal samples of each group of children were collected and the sequencing data was processed and analyzed. The dilution curve reflected the reasonableness of the amount of sequencing data.Results: The number of species composition sequences in the G1, G2 and G3 groups was lower than that in the C group, especially for the G2 and G3 groups. The four most abundant bacteria were Bacteroidetes, Firmicutes, Proteobacteria and Actinobacteria. The relative abundance of Proteobacteria in the G2 and G3 groups was significantly higher than that in the G1 and C groups, while the relative abundance of Actinobacteria was significantly reduced, and the relative abundance of Actinobacteria in the G1 group was lower than that in the C group. Principal component analysis of the UPGMA clustering tree and each group of samples showed that the microbial community composition of the same group of samples was similar.Conclusions: The abundance of intestinal microbes in children with IgA vasculitis is lower than in normal children. Bacteroidetes, Firmicutes, Proteobacteria and Actinobacteria are the four most abundant bacteria in the intestinal flora of children. Proteobacteria and Actinobacteria are associated with organ involvement in IgA vasculitis.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2685
Author(s):  
Xiaoying Yang ◽  
Yuchen Yao ◽  
Xueying Zhang ◽  
Jiahui Zhong ◽  
Fuli Gao ◽  
...  

Seasonal breeding is a normal phenomenon in which animals adapt to natural selection and reproduce only in specific seasons. Large studies have reported that the gut microbiota is closely related to reproduction. The purpose of this study was to explore the distinct taxonomy and function of the gut microbiota in the breeding and non-breeding seasons of the wild ground squirrel (Spermophilus dauricus). The 16S rRNA gene sequencing technology was utilized to sequence the gut microbiota of the wild ground squirrel. PICRUSt analysis was also applied to predict the function of the gut microbiota. The results suggested that the main components of the gut microbiota in all samples were Firmicutes (61.8%), Bacteroidetes (32.4%), and Proteobacteria (3.7%). Microbial community composition analyses revealed significant differences between the breeding and non-breeding seasons. At the genus level, Alistipes, Mycoplasma, Anaerotruncus, and Odoribacter were more abundant in the non-breeding season, while Blautia and Streptococcus were more abundant in the breeding season. The results of a functional prediction suggested that the relative abundance of functional categories that were related to lipid metabolism, carbohydrate metabolism, and nucleotide metabolism increased in the breeding season. The relative abundance of energy metabolism, transcription, and signal transduction increased in the non-breeding season. Overall, this study found differences in the taxonomy and function of the gut microbiota of the wild ground squirrel between the breeding and non-breeding seasons, and laid the foundation for further studies on the relationship between the gut microbiota and seasonal breeding.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hanchang He ◽  
Minwa Lin ◽  
Lu You ◽  
Tongqing Chen ◽  
Zijie Liang ◽  
...  

Background. Increasing evidences have reported gut microbiota dysbiosis in many diseases, including chronic kidney disease and pediatric idiopathic nephrotic syndrome (INS). There is lack evidence of intestinal microbiota dysbiosis in adults with INS, however. Here, we to address the association between the gut microbiome and INS. Methods. Stool samples of 35 adult INS patients and 35 healthy volunteers were collected. Total bacterial DNA was extracted, and the V4 regions of the bacterial 16S ribosomal RNA gene were sequenced. The fecal microbiome was analyzed using bioinformatics. The correlation analysis between altered taxa and clinical parameters was also included. Results. We found that microbial diversity in the gut was reduced in adult patients with INS. Acidobacteria, Negativicutes, Selenomonadales, Veillonellaceae, Clostridiaceae, Dialister, Rombousia, Ruminiclostridium, Lachnospira, Alloprevotella, Clostridium sensu stricto, Megamonas, and Phascolarctobacterium were significantly reduced, while Pasteurellales, Parabacteroides, Bilophila, Enterococcus, Eubacterium ventriosum, and Lachnoclostridium were markedly increased in patients with INS. In addition, Burkholderiales, Alcaligenaceae, and Barnesiella were negatively correlated with serum creatinine. Blood urea nitrogen levels were positively correlated with Christensenellaceae, Bacteroidales_S24.7, Ruminococcaceae, Ruminococcus, and Lachnospiraceae_NK4A136, but were negatively correlated with Flavonifractor_plautii and Erysipelatoclostridium_ramosum. Enterobacteriales, Enterobacteriaceae, Porphyromonadaceae, Escherichia/Shigella, Parabacteroides, and Escherichia_coli were positively correlated with albumin. Proteinuria was positively correlated with Verrucomicrobia, Coriobacteriia, Thermoleophilia, Ignavibacteria, Coriobacteriales, Nitrosomonadales, Coriobacteriaceae, and Blautia, but was negatively correlated with Betaproteobacteria, Burkholderiales, and Alcaligenaceae. Conclusion. Our findings show compositional alterations of intestinal microbiota in adult patients with INS and correlations between significantly altered taxa and clinical parameters, which points out the direction for the development of new diagnostics and therapeutic approaches targeted intestinal microbiota.


Sign in / Sign up

Export Citation Format

Share Document