scholarly journals Interaction between PSMD10 and GRP78 accelerates endoplasmic reticulum stress-mediated hepatic apoptosis induced by homocysteine

Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Kun Xiao ◽  
Shengchao Ma ◽  
Long Xu ◽  
Ning Ding ◽  
Hui Zhang ◽  
...  

Abstract Background The liver plays an important role in production and metabolism of homocysteine (Hcy), which has been reported to be involved in liver injury. In our previous work, we confirm that Hcy can induce liver injury by activating endoplasmic reticulum (ER) stress. However, the underlying mechanisms remain largely unknown. Results In present study, we established the Hcy-induced liver injury model by feeding cbs+/− mice with high methionine diet, and found that a considerable mass of disordered arrangement of hepatocytes and enlarged space between hepatocytes were frequently occurred in the liver of cbs+/− mice, accompanied with elevated expression levels of apoptosis-related proteins. In addition, Hcy could activate ER stress both in cbs+/− mice and hepatocytes. Mechanistically, Hcy promoted the expression levels of proteasome 26S subunit non-ATPase 10 (PSMD10) in hepatocytes; and the expression of ER stress indicators and apoptosis-associated proteins were significantly suppressed when PSMD10 was silenced in hepatocytes under Hcy treatment. Moreover, bioinformatics analysis and luciferase reporter assay demonstrated that PSMD10 was a target gene of miR-212-5p. Consistently, miR-212-5p overexpression could inhibit ER stress-mediated apoptosis of hepatocytes under Hcy treatment. With the help of co-immunoprecipitation assay, we identified that the interaction between PSMD10 and GRP78 accelerated ER stress-mediated hepatic apoptosis induced by Hcy. Conclusions Our findings indicate that miR-212-5p directly targets PSMD10 and subsequently activates ER stress to promote Hcy-induced apoptosis of hepatocytes. We propose that endogenous PSMD10 physically interacts with GRP78 to regulate ER stress. Our study may provide the therapeutic target for the liver injury induced by Hcy.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Wenzheng Wang ◽  
Xiangcheng Qing ◽  
Baichuan Wang ◽  
Kaige Ma ◽  
Yulong Wei ◽  
...  

Tauroursodeoxycholic acid (TUDCA) is a kind of hydrophilic bile acid, which could protect cells from death via inhibiting endoplasmic reticulum (ER) stress. However, the role of TUDCA in compression-induced intervertebral disc degeneration (IVDD) has not been elucidated. Here, we used a previously described device to mimic in vivo compression conditions. NP cells treated with DMSO or TUDCA were exposed to compression. Then, cell viability, morphology, and apoptosis were detected. Furthermore, apoptosis-related proteins and necroptosis markers were detected too. To investigate the specific cytoprotective mechanisms of TUDCA in IVDD, we detected the ER morphology by electron microscopy. In addition, the ER stress of nucleus pulposus (NP) cells was quantitatively evaluated by analyzing the level of ER-stress-associated proteins. Our results revealed that TUDCA could protect NP cells from excessive compression-induced death by reducing the apoptosis and necroptosis. In addition, ER stress is involved in pathogenesis of IVDD induced by excessive compression and plays a detrimental role. TUDCA exerts its protective functions by inhibiting ER stress. In conclusion, TUDCA could protect NP cells from compression-induced death, which suggested that treatment by TUDCA may be a potential method to retard IVDD.


2019 ◽  
Vol 54 (5) ◽  
pp. 465-471 ◽  
Author(s):  
Sheng Wang ◽  
Jiajie Luan ◽  
Xiongwen Lv

ICR mice received ethanol (5 g/kg) by intragastric administration, showing an increase in hepatosomatic index and ALT. These effects were accompanied by increased expression of ER stress-related proteins and exosomal miR-122, PBA intervention can attenuate these changes induced by ethanol provides a potential therapy strategy for acute alcoholic liver injury.


2020 ◽  
Author(s):  
Huiping Zhang ◽  
Kun Xiao ◽  
Shengchao Ma ◽  
Long Xu ◽  
Ning Ding ◽  
...  

Abstract Background: Increasing evidences supported that elevated homocysteine (Hcy) levels contribute to cell apoptosis is implicated in the pathogenesis of liver injury, it correlates with liver disease severity. However, the underlying mechanism of apoptosis in Hcy-mediated liver injury remains obscure. Results: In this study, we found that homocysteine increases ER stress-mediated apoptosis and aggravates liver injury through up-regulation of PSMD10 expression in cbs+/- mice mice fed with high methionine diet and hepatocytes treated with homocysteine in vitro. Knockdown of PSMD10 expression remarkably reduced ER stress or apoptosis-associated protein in hepatocytes exposed to homocysteine. Moreover, bioinformatics analysis revealed that PSMD10 is a potential target gene of miR-212-5p, and luciferase reporter assay also confirmed that miR-212-5p negatively regulated PSMD10 expression by direct binding to its 3’-UTR regions. Subsequently, over-expression of miR-212-5p inhibited ER stress-mediated hepatocytes apoptosis though targeting PSMD10, all of which were abrogated by knockdown of miR-212-5p expression. Further study showed that the interaction between PSMD10 and GRP78 accelerated ER stress-mediated hepatic apoptosis induced by homocysteine. Conclusion: Taken together, these results demonstrated that down-regulation of miR-212-5p facilitates homocysteine-induced hepatocytes apoptosis via targeting PSMD10, which provides novel insight into the mechanism of homocysteine induced apoptosis in liver injury.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yazhou Guo ◽  
Chen Yang ◽  
Rong Guo ◽  
Ruijie Huang ◽  
Yongxia Su ◽  
...  

Monocrotaline (MCT), a pyrrolizidine alkaloid, is the major toxin in Crotalaria, which causes cell apoptosis in humans and animals. It has been reported that the liver is a vulnerable target of MCT. However, the exact molecular mechanism of the interaction between endoplasmic reticulum (ER) stress and liver injury induced by MCT is still unclear. In this study, the cytotoxicity of MCT on primary rat hepatocytes was analyzed by a CCK-8 assay and Annexin V-FITC/PI assay. Protein expression was detected by western blotting and immunofluorescence staining. As a result, MCT significantly decreased the cell viability and mediated the apoptosis of primary rat hepatocytes. Meanwhile, MCT could also induce ER stress in hepatocytes, indicated by the expression of ER stress-related proteins, including GRP78, p-IRE1α, ATF6, p-eIF2α, ATF4, and CHOP. Pretreatment with 4-PBA, an inhibitor of ER stress, or knockdown of CHOP by siRNA could partly enhance cell viability and relieve the apoptosis. Our findings indicate that ER stress is involved in the hepatotoxicity induced by MCT, and CHOP plays an important role in this process.


2010 ◽  
Vol 391 (7) ◽  
Author(s):  
Rongyang Dai ◽  
Juan Li ◽  
Youping Liu ◽  
Dongmei Yan ◽  
Shaokun Chen ◽  
...  

Abstract Cancer cells are relatively resistant to endoplasmic reticulum (ER) stress-induced apoptosis. However, the underlying mechanisms remain largely unclear. We observed that the microRNAs miR-221/222 are associated with apoptosis regulation under ER stress in human hepatocellular carcinoma (HCC) cells. Induction of ER stress does not trigger significant apoptosis but obviously causes downregulation of miR-221/222 in HCC cells. In these cells, ER stress-induced apoptosis is enhanced by miR-221/222 mimics and attenuated by miR-221/222 inhibitors. miR-221/222 promoted-apoptosis under ER stress is associated with p27Kip1- and MEK/ERK-mediated cell cycle regulation. Our results suggest that suppression of miR-221/222 plays a crucial role in the protection against apoptosis induced by ER stress in HCC cells.


2020 ◽  
Vol 168 (4) ◽  
pp. 365-374
Author(s):  
Shaoxun Li ◽  
Shuanghong Jin ◽  
Weilai Chen ◽  
Jiake Yu ◽  
Peipei Fang ◽  
...  

Abstract This study aimed to investigate the mechanism of mangiferin on regulating endoplasmic reticulum (ER) stress in acute liver injury. The mouse model of acute liver injury was established by injection of LPS/D-GalN. The primary mouse hepatocytes were stimulated with LPS to induce the in vitro model. The effect of miR-20a/101a on the luciferase activity of Nrf2 3′-UTR was assessed by luciferase reporter assay. Mangiferin improved the liver function, inhibited the oxidative stress and ER stress and down-regulated the expressions of miR-20a and miR-101a in LPS/D-GalN-induced mice and LPS-induced hepatocytes. The knockdown of miR-20a and miR-101a co-operatively alleviated ER stress of LPS-induced hepatocytes. miR-20a and miR-101a both targeted Nrf2 and the over-expression of miR-20a or miR-101a decreased Nrf2 protein level, while their silences increased Nrf2 protein level. The silence of miR-20a and miR-101a promoted Nrf2 expression and inhibited the ER stress in LPS-induced hepatocytes, while the knockdown of Nrf2 reversed these effects. The over-expression of miR-20a and miR-101a eliminated the effects of mangiferin on Nrf2 protein level and ER stress in LPS-induced hepatocytes and Nrf2 over-expression altered these trends. Our findings suggest that mangiferin alleviates ER stress in acute liver injury by regulating the miR-20a/miR-101a-Nrf2 axis.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Nan Zhou ◽  
Hui Qiao ◽  
Miaomiao Zeng ◽  
Lei Yang ◽  
Yongning Zhou ◽  
...  

Abstract Background Mounting evidence implicates circular RNAs (circRNAs) in various biological processes during cancer progression. Gastric cancer is a main cause of cancer-related deaths worldwide. Herein, we aimed at investigating whether circ_002117 mediates gastric cancer progression through endoplasmic reticulum (ER) stress. Methods Bioinformatics analysis detected differentially expressed circRNAs and their target miRNA candidates, and RT-qPCR was performed to detect expression of circ_002117, microRNA (miRNA)-370 and HERPUD1 in gastric cancer tissues and cells. Gastric cancer cells were transfected with plasmids and their proliferative ability and apoptosis were detected with gain- and loss-of-function assay. The ER of treated cells was observed under a transmission electron microscope. Dual-luciferase reporter gene assay and RIP were performed to detect the interaction between HEPRUD1, miR-370 and circ_002117-treated cells were injected into mice to establish xenograft tumor model. Results Circ_002117 and HEPRUD1 were poorly expressed whereas miR-370 was highly expressed in clinical cancer tissues and cells. Circ_002117 was indicated to target and suppress miR-370 expression, while HERPUD1 was directly targeted by miR-370. Circ_002117 overexpression or miR-370 deficiency promoted ER stress-induced apoptosis and decreased proliferation of gastric cancer cells, which was reversed by silencing of HEPRUD1. Circ_002117 overexpression or miR-370 depletion significantly suppressed gastric cancer tumorigenesis in vivo. Conclusions Taken altogether, circ_002117 facilitated ER stress-induced apoptosis in gastric cancer by upregulating HERPUD1 through miR-370 inhibition.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Li-zhen Qiu ◽  
Lan-xin Yue ◽  
Yu-hao Ni ◽  
Wei Zhou ◽  
Cong-shu Huang ◽  
...  

Cassiae Semen is a widely used herbal medicine and a popular edible variety in many dietary or health beverage. Emerging evidence disclosed that improper administration of Cassiae Semen could induce obvious liver injury, which is possibly attributed to emodin, one of the bioactive anthraquinone compounds in Cassiae Semen, which caused hepatotoxicity, but the underlying mechanisms are not completely understood. Hence, the present study firstly explored the possible role of oxidative stress-mediated mitochondrial dysfunction and ER stress in emodin-cause apoptosis of L02 cells, aiming to elaborate possible toxic mechanisms involved in emodin-induced hepatotoxicity. Our results showed that emodin-induced ROS activated ER stress and the UPR via the BiP/IRE1α/CHOP signaling pathway, followed by ER Ca2+ release and cytoplasmic Ca2+ overloading. At the same time, emodin-caused redox imbalance increased mtROS while decreased MMP and mitochondrial function, resulting in the leaks of mitochondrial-related proapoptotic factors. Interestingly, blocking Ca2+ release from ER by 2-APB could inhibit emodin-induced apoptosis of L02, but the restored mitochondrial function did not reduce the apoptosis rates of emodin-treated cells. Besides, tunicamycin (TM) and doxorubicin (DOX) were used to activate ER stress and mitochondrial injury at a dosage where obvious apoptosis was not observed, respectively. We found that cotreatment with TM and DOX significantly induced apoptosis of L02 cells. Thus, all the results indicated that emodin-induced excessive ROS generation and redox imbalance promoted apoptosis, which was mainly associated with BiP/IRE1α/CHOP signaling-mediated ER stress and would be enhanced by oxidative stress-mediated mitochondrial dysfunction. Altogether, this finding has implicated that redox imbalance-mediated ER stress could be an alternative target for the treatment of Cassiae Semen or other medicine-food homologous varieties containing emodin-induced liver injury.


2019 ◽  
Vol 19 (5) ◽  
pp. 665-675 ◽  
Author(s):  
Wenjiao Shi ◽  
Zhixin Guo ◽  
Ruixia Yuan

Background and Objective: This study investigated whether rapamycin has a protective effect on the testis of diabetic rats by regulating autophagy, endoplasmic reticulum stress, and oxidative stress. Methods: Thirty male Sprague-Dawley rats were randomly divided into three groups: control, diabetic, and diabetic treated with rapamycin, which received gavage of rapamycin (2mg.kg-1.d-1) after induction of diabetes. Diabetic rats were induced by intraperitoneal injection of streptozotocin (STZ, 65mg.Kg-1). All rats were sacrificed at the termination after 8 weeks of rapamycin treatment. The testicular pathological changes were determined by hematoxylin and eosin staining. The protein or mRNA expression of autophagy-related proteins (Beclin1, microtubule-associated protein light chain 3 (LC3), p62), ER stress marked proteins (CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP), caspase-12), oxidative stress-related proteins (p22phox, nuclear factor erythroid2-related factor 2 (Nrf2)) and apoptosis-related proteins (Bax, B cell lymphoma-2 (Bcl-2)) were assayed by western blot or real-time fluorescence quantitative PCR. Results: There were significant pathological changes in the testes of diabetic rats. The expression of Beclin1, LC3, Nrf2, Bcl-2 were significantly decreased and p62, CHOP, caspase12, p22phox, and Bax were notably increased in the testis of diabetic rats (P <0.05). However, rapamycin treatment for 8 weeks significantly reversed the above changes in the testis of diabetic rats (P <0.05). Conclusion: Rapamycin appears to produce a protective effect on the testes of diabetic rats by inducing the expression of autophagy and inhibiting the expression of ER-stress, oxidative stress, and apoptosis.


2021 ◽  
Vol 49 (5) ◽  
pp. 030006052110143
Author(s):  
Mingcui Zang ◽  
Xun Guo ◽  
Manqiu Chen

Objective MicroRNAs (miRNAs) regulate prostate tumorigenesis and progression by involving different molecular pathways. In this study, we examined the role of miR-572 in prostate cancer (PCa). Methods The proliferation rates of LNCaP and PC-3 PCa cells were studied using MTT assays. Transwell migration and Matrigel invasion assays were performed to evaluate cell migration and invasion, respectively. Protein expression levels were examined using western blotting. Docetaxel-induced apoptosis was evaluated by Caspase-Glo3/7 assays. The putative miR-572 binding site in the phosphatase and tensin homolog (PTEN) 3ʹ untranslated region (3ʹ UTR) was assessed with dual-luciferase reporter assays. Additionally, miR-572 expression levels in human PCa tissues were examined by qRT-PCR assays. Results Upregulation of miR-572 promoted proliferation, migration, and invasion of PCa cells. Overexpression of miR-572 decreased sensitivity of PCa cells to docetaxel treatment by reducing docetaxel-induced apoptosis. MiR-572 can regulate migration and invasion in PCa cells. Furthermore, miR-572 could regulate expression of PTEN and p-AKT in PCa cells by directly binding to the PTEN 3ʹ UTR. MiR-572 expression levels were increased in human PCa tissues and associated with PCa stage. Conclusions miR-572 displayed essential roles in PCa tumor growth and its expression level may be used to predict docetaxel treatment in these tumors.


Sign in / Sign up

Export Citation Format

Share Document