scholarly journals Human menstrual blood-derived stem cells mitigate bleomycin-induced pulmonary fibrosis through anti-apoptosis and anti-inflammatory effects

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xin Chen ◽  
Yi Wu ◽  
Yanling Wang ◽  
Lijun Chen ◽  
Wendi Zheng ◽  
...  

Abstract Background Idiopathic pulmonary fibrosis is a kind of diffuse interstitial lung disease, the pathogenesis of which is unclear, and there is currently a lack of good treatment to improve the survival rate. Human menstrual blood-derived mesenchymal stem cells (MenSCs) have shown great potential in regenerative medicine. This study aimed to explore the therapeutic potential of MenSCs for bleomycin-induced pulmonary fibrosis. Methods We investigated the transplantation of MenSCs in a pulmonary fibrosis mouse model induced by BLM. Mouse was divided into three groups: control group, BLM group, MenSC group. Twenty-one days after MenSC transplantation, we examined collagen content, pathological, fibrosis area in the lung tissue, and the level of inflammatory factors of serum. RNA sequence was used to examine the differential expressed gene between three groups. Transwell coculture experiments were further used to examine the function of MenSCs to MLE-12 cells and mouse lung fibroblasts (MLFs) in vitro. Results We observed that transplantation of MenSCs significantly improves pulmonary fibrosis mouse through evaluations of pathological lesions, collagen deposition, and inflammation. Transwell coculturing experiments showed that MenSCs suppress the proliferation and the differentiation of MLFs and inhibit the apoptosis of MLE-12 cells. Furthermore, antibody array results demonstrated that MenSCs inhibit the apoptosis of MLE-12 cells by suppressing the expression of inflammatory-related cytokines, including RANTES, Eotaxin, GM-CSF, MIP-1γ, MCP-5, CCL1, and GITR. Conclusions Collectively, our results suggested MenSCs have a great potential in the treatment of pulmonary fibrosis, and cytokines revealed in antibody array are expected to become the target of future therapy of MenSCs in clinical treatment of pulmonary fibrosis.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Chunjie Xu ◽  
Jing Zhao ◽  
Qiuyue Li ◽  
Lin Hou ◽  
Yan Wang ◽  
...  

Abstract Background Silicosis is an occupational respiratory disease caused by long-term excessive silica inhalation, which is most commonly encountered in industrial settings. Unfortunately, there is no effective therapy to delay and cure the progress of silicosis. In the recent years, stem cell therapy has emerged as an attractive tool against pulmonary fibrosis (PF) owing to its unique biological characteristics. However, the direct use of stem cells remains limitation by many risk factors for therapeutic purposes. The exclusive utility of exosomes secreted from stem cells, rather than cells, has been considered a promising alternative to overcome the limitations of cell-based therapy while maintaining its advantages. Methods and results In this study, we first employed a three-dimensional (3D) dynamic system to culture human umbilical cord mesenchymal stem cell (hucMSC) spheroids in a microcarrier suspension to yield exosomes from serum-free media. Experimental silicosis was induced in C57BL/6J mice by intratracheal instillation of a silica suspension, with/without exosomes derived from hucMSC (hucMSC-Exos), injection via the tail vein afterwards. The results showed that the gene expression of collagen I (COL1A1) and fibronectin (FN) was upregulated in the silica group as compared to that in the control group; however, this change decreased with hucMSC-Exo treatment. The value of FEV0.1 decreased in the silica group as compared to that in the control group, and this change diminished with hucMSC-Exo treatment. These findings suggested that hucMSC-Exos could inhibit silica-induced PF and regulate pulmonary function. We also performed in vitro experiments to confirm these findings; the results revealed that hucMSC-Exos decreased collagen deposition in NIH-3T3 cells exposed to silica. Conclusions Taken together, these studies support a potential role for hucMSC-Exos in ameliorating pulmonary fibrosis and provide new evidence for improving clinical treatment induced by silica.


2022 ◽  
Vol 12 (3) ◽  
pp. 659-664
Author(s):  
Wei Li ◽  
Tieying Shan ◽  
Jianping Shi ◽  
Zexian Fu ◽  
Shujing Qi ◽  
...  

Extracted MenSC (Menstrual blood-derived stem cells) from female menstrual blood. Added various exogenous factors in-vitro and simulated the female uterine environment to observe how to make MenSC differentiation into Endometrial epithelial cells by artificial induction. MenSCs were divided into 4 groups: 2.5×10−5 mol/L E group, 1.613 nmol/L EGF group, 2.5×10−5 mol/L E+1.613 nmol/L EGF group, control Group (only MenSCs); the relevant indicators of the experiment includes cell staining and Western Blot to detect CK and VIM protein content; RT-PCR to detect CK-19 mRNA and VIM mRNA. The cell staining results showed that E+EGF group had significant differentiation in 7 days and 14 days. CK-19mRNA of E+EGF group was significantly higher than other groups, and the EGF group expression was obviously higher than that of E group, and VIMmRNA expression is opposite to that. The protein expression had the similar performance. MenSC can differentiate into endometrial epithelial cells after induced by E and EFG; and the co-culture of E and EFG can achieve better differentiation, which proves their work together in MenSC differentiate towards endometrial epithelial cells.


2006 ◽  
Vol 290 (1) ◽  
pp. L59-L65 ◽  
Author(s):  
Shinsuke Murakami ◽  
Noritoshi Nagaya ◽  
Takefumi Itoh ◽  
Masaharu Kataoka ◽  
Takashi Iwase ◽  
...  

The balance between prostacyclin and thromboxane A2 (TXA2) plays an important role in pulmonary homeostasis. However, little information is available regarding the therapeutic potency of these prostanoids for pulmonary fibrosis. We have recently developed ONO-1301, a novel long-acting prostacyclin agonist with thromboxane synthase inhibitory activity. Thus we investigated whether repeated administration of ONO-1301 attenuates bleomycin-induced pulmonary fibrosis in mice. After intratracheal injection of bleomycin or saline, mice were randomized to receive repeated subcutaneous administration of ONO-1301 or vehicle. Bronchoalveolar lavage (BAL) and histological analyses were performed at 3, 7, and 14 days after bleomycin injection. In vitro studies using mouse lung fibroblasts were also performed. ONO-1301 significantly attenuated the development of bleomycin-induced pulmonary fibrosis, as indicated by significant decreases in Ashcroft score and lung hydroxyproline content. ONO-1301 significantly reduced total cell count, neutrophil count, and total protein level in BAL fluid in association with a marked reduction of TXB2. A single administration of ONO-1301 significantly increased plasma cAMP level for >2 h. In vitro, ONO-1301 and a cAMP analog dose-dependently reduced cell proliferation in mouse lung fibroblasts. The reduction in cell proliferation by ONO-1301 was attenuated by a protein kinase A (PKA) inhibitor. Furthermore, bleomycin mice treated with ONO-1301 had a significantly higher survival rate than those given vehicle. These results suggest that repeated administration of ONO-1301 attenuates the development of bleomycin-induced pulmonary fibrosis and improves survival in bleomycin mice, at least in part by inhibition of TXA2 synthesis and activation of the cAMP/PKA pathway.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
David M. Habiel ◽  
Ana Paula Moreira ◽  
Ugur B. Ismailoglu ◽  
Michael P. Dunleavy ◽  
Karen A. Cavassani ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is the most common form of interstitial lung disease characterized by the persistence of activated myofibroblasts resulting in excessive deposition of extracellular matrix proteins and profound tissue remodeling. In the present study, the expression of tumor necrosis factor- (TNF-) related apoptosis-inducing ligand (TRAIL) was key to the resolution of bleomycin-induced pulmonary fibrosis. Bothin vivoandin vitrostudies demonstrated that Gr-1+TRAIL+bone marrow-derived myeloid cells blocked the activation of lung myofibroblasts. Although soluble TRAIL was increased in plasma from IPF patients, the presence of TRAIL+myeloid cells was markedly reduced in IPF lung biopsies, and primary lung fibroblasts from this patient group expressed little of the TRAIL receptor-2 (DR5) when compared with appropriate normal samples. IL-13 was a potent inhibitor of DR5 expression in normal fibroblasts. Together, these results identified TRAIL+myeloid cells as a critical mechanism in the resolution of pulmonary fibrosis, and strategies directed at promoting its function might have therapeutic potential in IPF.


Author(s):  
Minu Anoop ◽  
Indrani Datta

: Most conventional treatments for neurodegenerative diseases fail due to their focus on neuroprotection rather than neurorestoration. Stem cell‐based therapies are becoming a potential treatment option for neurodegenerative diseases as they can home in, engraft, differentiate and produce factors for CNS recovery. Stem cells derived from human dental pulp tissue differ from other sources of mesenchymal stem cells due to their embryonic neural crest origin and neurotrophic property. These include both dental pulp stem cells [DPSCs] from dental pulp tissues of human permanent teeth and stem cells from human exfoliated deciduous teeth [SHED]. SHED offer many advantages over other types of MSCs such as good proliferative potential, minimal invasive procurement, neuronal differentiation and neurotrophic capacity, and negligible ethical concerns. The therapeutic potential of SHED is attributed to the paracrine action of extracellularly released secreted factors, specifically the secretome, of which exosomes is a key component. SHED and its conditioned media can be effective in neurodegeneration through multiple mechanisms, including cell replacement, paracrine effects, angiogenesis, synaptogenesis, immunomodulation, and apoptosis inhibition, and SHED exosomes offer an ideal refined bed-to-bench formulation in neurodegenerative disorders. However, in spite of these advantages, there are still some limitations of SHED exosome therapy, such as the effectiveness of long-term storage of SHED and their exosomes, the development of a robust GMP-grade manufacturing protocol, optimization of the route of administration, and evaluation of the efficacy and safety in humans. In this review, we have addressed the isolation, collection and properties of SHED along with its therapeutic potential on in vitro and in vivo neuronal disorder models as evident from the published literature.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
HuiYa Li ◽  
DanQing Hu ◽  
Guilin Chen ◽  
DeDong Zheng ◽  
ShuMei Li ◽  
...  

AbstractBoth weak survival ability of stem cells and hostile microenvironment are dual dilemma for cell therapy. Adropin, a bioactive substance, has been demonstrated to be cytoprotective. We therefore hypothesized that adropin may produce dual protective effects on the therapeutic potential of stem cells in myocardial infarction by employing an adropin-based dual treatment of promoting stem cell survival in vitro and modifying microenvironment in vivo. In the current study, adropin (25 ng/ml) in vitro reduced hydrogen peroxide-induced apoptosis in rat bone marrow mesenchymal stem cells (MSCs) and improved MSCs survival with increased phosphorylation of Akt and extracellular regulated protein kinases (ERK) l/2. Adropin-induced cytoprotection was blocked by the inhibitors of Akt and ERK1/2. The left main coronary artery of rats was ligated for 3 or 28 days to induce myocardial infarction. Bromodeoxyuridine (BrdU)-labeled MSCs, which were in vitro pretreated with adropin, were in vivo intramyocardially injected after ischemia, following an intravenous injection of 0.2 mg/kg adropin (dual treatment). Compared with MSCs transplantation alone, the dual treatment with adropin reported a higher level of interleukin-10, a lower level of tumor necrosis factor-α and interleukin-1β in plasma at day 3, and higher left ventricular ejection fraction and expression of paracrine factors at day 28, with less myocardial fibrosis and higher capillary density, and produced more surviving BrdU-positive cells at day 3 and 28. In conclusion, our data evidence that adropin-based dual treatment may enhance the therapeutic potential of MSCs to repair myocardium through paracrine mechanism via the pro-survival pathways.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3087
Author(s):  
Rana Smaida ◽  
Luc Pijnenburg ◽  
Silvia Irusta ◽  
Erico Himawan ◽  
Gracia Mendoza ◽  
...  

The treatment of osteochondral defects remains a challenge. Four scaffolds were produced using Food and Drug Administration (FDA)-approved polymers to investigate their therapeutic potential for the regeneration of the osteochondral unit. Polycaprolactone (PCL) and poly(vinyl-pyrrolidone) (PVP) scaffolds were made by electrohydrodynamic techniques. Hydroxyapatite (HAp) and/or sodium hyaluronate (HA) can be then loaded to PCL nanofibers and/or PVP particles. The purpose of adding hydroxyapatite and sodium hyaluronate into PCL/PVP scaffolds is to increase the regenerative ability for subchondral bone and joint cartilage, respectively. Human bone marrow-derived mesenchymal stem cells (hBM-MSCs) were seeded on these biomaterials. The biocompatibility of these biomaterials in vitro and in vivo, as well as their potential to support MSC differentiation under specific chondrogenic or osteogenic conditions, were evaluated. We show here that hBM-MSCs could proliferate and differentiate both in vitro and in vivo on these biomaterials. In addition, the PCL-HAp could effectively increase the mineralization and induce the differentiation of MSCs into osteoblasts in an osteogenic condition. These results indicate that PCL-HAp biomaterials combined with MSCs could be a beneficial candidate for subchondral bone regeneration.


2021 ◽  
Vol 22 (9) ◽  
pp. 4370
Author(s):  
Cássia de Fáveri ◽  
Paula M. Poeta Fermino ◽  
Anna P. Piovezan ◽  
Lia K. Volpato

The pathogenesis of endometriosis is still controversial, although it is known that the inflammatory immune response plays a critical role in this process. The resolution of inflammation is an active process where the activation of endogenous factors allows the host tissue to maintain homeostasis. The mechanisms by which pro-resolving mediators (PRM) act in endometriosis are still little explored. Thus, this integrative review aims to synthesize the available content regarding the role of PRM in endometriosis. Experimental and in vitro studies with Lipoxin A4 demonstrate a potential inhibitory effect on endometrial lesions’ progression, attenuating pro-inflammatory and angiogenic signals, inhibiting proliferative and invasive action suppressing intracellular signaling induced by cytokines and estradiol, mainly through the FPR2/ALX. Investigations with Resolvin D1 demonstrated the inhibition of endometrial lesions and decreased pro-inflammatory factors. Annexin A1 is expressed in the endometrium and is specifically present in women with endometriosis, although the available studies are still inconsistent. Thus, we believe there is a gap in knowledge regarding the PRM pathways in patients with endometriosis. It is important to note that these substances’ therapeutic potential is evident since the immune and abnormal inflammatory responses play an essential role in endometriosis development and progression.


Author(s):  
Fatemeh Hejazi ◽  
Vahid Ebrahimi ◽  
Mehrdad Asgary ◽  
Abbas Piryaei ◽  
Mohammad Javad Fridoni ◽  
...  

AbstractOsteoporosis is a common bone disease that results in elevated risk of fracture, and delayed bone healing and impaired bone regeneration are implicated by this disease. In this study, Elastin/Polycaprolactone/nHA nanofibrous scaffold in combination with mesenchymal stem cells were used to regenerate bone defects. Cytotoxicity, cytocompatibility and cellular morphology were evaluated in vitro and observations revealed that an appropriate environment for cellular attachment, growth, migration, and proliferation is provided by this scaffold. At 3 months following ovariectomy (OVX), the rats were used as animal models with an induced critical size defect in the femur to evaluate the therapeutic potential of osteogenic differentiation of bone marrow mesenchymal stem cells (BM-MSCs) seeded on 3 dimension (3D) scaffolds. In this experimental study, 24 female Wistar rats were equally divided into three groups: Control, scaffold (non-seeded BM-MSC), and scaffold + cell (seeded BM-MSC) groups. 30 days after surgery, the right femur was removed, and underwent a stereological analysis and RNA extraction in order to examine the expression of Bmp-2 and Vegf genes. The results showed a significant increase in stereological parameters and expression of Bmp-2 and Vegf in scaffold and scaffold + cell groups compared to the control rats. The present study suggests that the use of the 3D Elastin/Polycaprolactone (PCL)/Nano hydroxyapatite (nHA) scaffold in combination with MSCs may improve the fracture regeneration and accelerates bone healing at the osteotomy site in rats.


2021 ◽  
Vol 11 (9) ◽  
pp. 1838-1843
Author(s):  
Xiaohong Zhou ◽  
Xuzhong Hao ◽  
Feifei He

To investigate whether exosomes (exo) derived from human umbilical cord mesenchymal stem cells (huMSCs) and microRNA (miRNA)-342 have a protective effect on severe acute pancreatitis (SAP). Human umbilical cord blood was collected to extract huMSC-exo. With sham-operated mice as control group (n = 10), the other mice were induced to SAP model (n = 20), while 10 of the SAP mice received treatment with huMSC-exo. ELISA was performed to determine amylase and TAP level as well as inflammatory factors and HE staining to evaluate pathological changes of pancreatic tissue. The expression of miR-342 and Shh, Ptchl, and Smo in the Hh signal pathway was detected using RT-qPCR. The expression of miR-342 and the mRNA expression of Shh, Ptchl, and Smo was higher than that in model group (p < 0.05). The level of serum amylase, trypsinogen, and IFN-γ,Fasl, and IL-6 was upregulated in pancreas tissues of SAP mice relative to healthy mice, but their levels were decreased upon treatment with huMSC-exo and slightly higher than those of the control group, just not significantly. Collectively, the huMSC-exo may activate the Hh signaling pathway by regulating the expression of miR-342 increasing the expression of Shh, Ptchl, and Smo, and thereby healing of damaged pancreatic tissues in SAP.


Sign in / Sign up

Export Citation Format

Share Document