scholarly journals Decrease of peripheral blood mucosal‐associated invariant T cells and impaired serum Granzyme-B production in patients with gastric cancer

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chunyan Shao ◽  
Chenwen Zhu ◽  
Yun Zhu ◽  
Jiqing Hao ◽  
Yongxiang Li ◽  
...  

AbstractMucosal-associated invariant T (MAIT) cells are an invariant T cell subset, which have been reported to play an antimicrobial role in infectious diseases. However, little is known about it in malignant diseases and tumors, especially in gastric cancer (GC). So in this study, we aim to examine the frequency, phenotype, partial functional capacity and clinical relevance of this cells from GC patients’ peripheral blood by flow cytometry. It was shown that the frequency of peripheral blood MAIT cells was negatively correlated with their increasing age in healthy adults. Importantly, comparing to the healthy controls (HC), the frequency and the absolute number of MAIT cells from GC patients’ peripheral blood with or without chemotherapy were both significantly lower than those. For the phenotype, the proportion of CD4−MAIT cell subset in GC patients without chemotherapy was lower than in HC, but higher than in GC patients with chemotherapy. Whereas, the proportion of CD4−CD8+MAIT cell subset in GC patients without chemotherapy was significantly lower than that in HC. Finally, the level of Granzyme-B (GrB), a molecule associated with MAIT cells was markedly lower in GC patients. But the correlation between the serum levels of GC-associated tumor antigens and the percentages of MAIT cells in GC patients was not observed. In conclusion, our study shows the decreased frequency, changed phenotypes and partial potentially impaired function of MAIT cells in GC patients, suggesting a possible MAIT cell-based immunological surveillance of GC.

Immunology ◽  
2001 ◽  
Vol 93 (3) ◽  
pp. 383-389 ◽  
Author(s):  
WEVER ◽  
VAN DER VLIET ◽  
SPAENY ◽  
WOLBINK ◽  
VAN DIEPEN ◽  
...  

2020 ◽  
Vol 5 (49) ◽  
pp. eabc9492 ◽  
Author(s):  
Lauren J. Howson ◽  
Wael Awad ◽  
Anouk von Borstel ◽  
Hui Jing Lim ◽  
Hamish E. G. McWilliam ◽  
...  

The role unconventional T cells play in protective immunity in humans is unclear. Mucosal-associated invariant T (MAIT) cells are an unconventional T cell subset restricted to the antigen-presenting molecule MR1. Here, we report the discovery of a patient homozygous for a rare Arg31His (R9H in the mature protein) mutation in MR1 who has a history of difficult-to-treat viral and bacterial infections. MR1R9H was unable to present the potent microbially derived MAIT cell stimulatory ligand. The MR1R9H crystal structure revealed that the stimulatory ligand cannot bind due to the mutation lying within, and causing structural perturbation to, the ligand-binding domain of MR1. While MR1R9H could bind and be up-regulated by a MAIT cell inhibitory ligand, the patient lacked circulating MAIT cells. This shows the importance of the stimulatory ligand for MAIT cell selection in humans. The patient had an expanded γδ T cell population, indicating a compensatory interplay between these unconventional T cell subsets.


2020 ◽  
Vol 89 (1) ◽  
pp. e00524-20 ◽  
Author(s):  
Charles Kyriakos Vorkas ◽  
Olivier Levy ◽  
Miroslav Skular ◽  
Kelin Li ◽  
Jeffrey Aubé ◽  
...  

ABSTRACTMucosa-associated invariant T (MAIT) cells are an innate-like T cell subset in mammals that recognize microbial vitamin B metabolites presented by the evolutionarily conserved major histocompatibility complex class I (MHC I)-related molecule, MR1. Emerging data suggest that MAIT cells may be an attractive target for vaccine-induced protection against bacterial infections because of their rapid cytotoxic responses at mucosal services to a widely conserved bacterial ligand. In this study, we tested whether a MAIT cell priming strategy could protect against aerosol Mycobacterium tuberculosis infection in mice. Intranasal costimulation with the lipopeptide Toll-like receptor (TLR)2/6 agonist, Pam2Cys (P2C), and the synthetic MR1 ligand, 5-OP-RU, resulted in robust expansion of MAIT cells in the lung. Although MAIT cell priming significantly enhanced MAIT cell activation and expansion early after M. tuberculosis challenge, these MAIT cells did not restrict M. tuberculosis bacterial load. MAIT cells were depleted by the onset of the adaptive immune response, with decreased detection of granzyme B+ and gamma interferon (IFN-γ)+ MAIT cells relative to that in uninfected P2C/5-OP-RU-treated mice. Decreasing the infectious inoculum, varying the time between priming and aerosol infection, and testing MAIT cell priming in nitric oxide synthase 2 (NOS2)-deficient mice all failed to reveal an effect of P2C/5-OP-RU-induced MAIT cells on M. tuberculosis control. We conclude that intranasal MAIT cell priming in mice induces early MAIT cell activation and expansion after M. tuberculosis exposure, without attenuating M. tuberculosis growth, suggesting that MAIT cell enrichment in the lung is not sufficient to control M. tuberculosis infection.


2016 ◽  
Vol 213 (12) ◽  
pp. 2793-2809 ◽  
Author(s):  
Anda I. Meierovics ◽  
Siobhán C. Cowley

Mucosa-associated invariant T (MAIT) cells are a unique innate T cell subset that is necessary for rapid recruitment of activated CD4+ T cells to the lungs after pulmonary F. tularensis LVS infection. Here, we investigated the mechanisms behind this effect. We provide evidence to show that MAIT cells promote early differentiation of CCR2-dependent monocytes into monocyte-derived DCs (Mo-DCs) in the lungs after F. tularensis LVS pulmonary infection. Adoptive transfer of Mo-DCs to MAIT cell–deficient mice (MR1−/− mice) rescued their defect in the recruitment of activated CD4+ T cells to the lungs. We further demonstrate that MAIT cell–dependent GM-CSF production stimulated monocyte differentiation in vitro, and that in vivo production of GM-CSF was delayed in the lungs of MR1−/− mice. Finally, GM-CSF–deficient mice exhibited a defect in monocyte differentiation into Mo-DCs that was phenotypically similar to MR1−/− mice. Overall, our data demonstrate that MAIT cells promote early pulmonary GM-CSF production, which drives the differentiation of inflammatory monocytes into Mo-DCs. Further, this delayed differentiation of Mo-DCs in MR1−/− mice was responsible for the delayed recruitment of activated CD4+ T cells to the lungs. These findings establish a novel mechanism by which MAIT cells function to promote both innate and adaptive immune responses.


2020 ◽  
Author(s):  
Amy L. Ellis-Connell ◽  
Alexis J. Balgeman ◽  
Erica C. Larson ◽  
Mark A. Rodgers ◽  
Cassaundra Ameel ◽  
...  

ABSTRACTMucosal associated invariant T (MAIT) cells recognize and can directly destroy bacterially infected cells. While a role for MAIT cells has been suggested in several in vitro and in vivo models of M.tuberculosis (Mtb) infection, these studies have often focused on MAIT cells within the peripheral blood or are cross-sectional studies rather than longitudinal studies. The role of MAIT cells within granulomas and other sites of Mtb infection is relatively unknown. Furthermore, how HIV/SIV infection might impair MAIT cells at the sites of Mtb infection has not been determined. Using a Mauritian cynomolgus macaque (MCM) model system, we phenotyped MAIT cells in the peripheral blood and BAL prior to and during infection with SIVmac239. To characterize the role of MAIT cells within granulomas, SIV+ and -naïve MCM were infected with a low dose of Mtb for 6 weeks. MAIT cell frequency and function was examined within the peripheral blood, distal airways, as well as within Mtb-affected lymph nodes (LN) and tissues. Surprisingly, we found no evidence of MAIT cell responsiveness to Mtb within granulomas. Additionally, MAIT cells only minimally responded to mycobacterial stimulus in ex vivo functional assays. In contrast, most MAIT cell activation seemed to occur in samples with highly active SIV replication, including blood and SIV-infected LN. Finally, the ability of MAIT cells to secrete TNFα (TNF) was impaired during SIV and Mtb co-infection, indicating that the two pathogens together could have a synergistically deleterious effect on MAIT cell function. The effect of this functional impairment on overall TB disease burden was unclear, but might be deleterious if MAIT cells are needed to fully activate antimycobacterial immune cells within the granulomas.


Author(s):  
Caroline Boulouis ◽  
Wan Rong Sia ◽  
Muhammad Yaaseen Gulam ◽  
Jocelyn Qi Min Teo ◽  
Thanh Kha Phan ◽  
...  

AbstractMucosa-associated invariant T (MAIT) cells are abundant antimicrobial T cells in humans, and recognize antigens derived from the microbial riboflavin biosynthetic pathway presented by the MHC-Ib-related protein (MR1). However, the mechanisms responsible for MAIT cell antimicrobial activity are not fully understood, and the efficacy of these mechanisms against antibiotic resistant bacteria has not been explored. Here, we show that MAIT cells mediate MR1-restricted antimicrobial activity against E. coli clinical strains in a manner dependent on the activity of cytolytic proteins, but independent of production of pro-inflammatory cytokines or induction of apoptosis in infected cells. The combined action of the pore-forming antimicrobial protein granulysin and the serine protease granzyme B released in response to TCR-mediated recognition of MR1-presented antigen is essential to mediate control against both cell-associated and free-living E. coli. Furthermore, MAIT cell-mediated bacterial control extend to multidrug-resistant E. coli primary clinical isolates additionally resistant to carbapenems, a class of last resort antibiotics. Notably, high levels of granulysin and granzyme B in the MAIT cell secretomes directly damage bacterial cells by increasing their permeability, rendering initially resistant E. coli susceptible to the bactericidal activity of carbapenems. These findings define the role of cytolytic effector proteins in MAIT cell-mediated antimicrobial activity, and indicate that granulysin and granzyme B synergize to restore carbapenem bactericidal activity and overcome carbapenem resistance in E. coli.One Sentence SummaryPotent antimicrobial activity of human MAIT cells overcomes carbapenem-resistance in control of Escherichia coli


2020 ◽  
Author(s):  
Ben-Shun Hu ◽  
Tian Tang ◽  
Tie-Long Wu ◽  
Ying-Yue Sheng ◽  
Yu-Zheng Xue

Abstract Background: CD137 is identified as a target for tumor immunotherapy. However, the role of CD137 in gastric cancer (GC), especially in inducing GC cell apoptosis has not been studied yet. Methods: Foxp3+ and CD8+ T cells in GCs were investigated by immunohistochemistry (IHC). CD137 expression in GCs was detected by flow cytometry, IHC and immunofluorescence (IF). Peripheral blood mononuclear cells (PBMCs) and CD8+ T cells isolated from peripheral blood were stimulated with a CD137 agonist in vitro. CD8+ T cells proliferation and p65 expression were explored by flow cytometry. p65 nuclear translocation was analyzed by IF. IL-10, TGF-β, IFN-γ, Perforin and Granzyme B were detected by real-time quantitative PCR (real-time PCR). PBMCs and primary GC cells were cocultured and stimulated with the CD137 agonist in vitro. Apoptosis of the primary GC cells was detected by flow cytometry. Results: Our data demonstrated that GC tumors show characteristics of an immunosuppressive microenvironment. CD137 was predominantly expressed in CD8+ T cells in GCs and had a positive correlation with tumor cell differentiation. CD137 agonist promoted CD8+ T cells proliferation and increased the secretion of IFN-γ, Perforin and Granzyme B, which induced primary GC cell apoptosis. Mechanistically, this study found that CD137 agonist could induce NF-κB nuclear translocation in CD8+ T cells. Conclusion: Our results demonstrate that CD137 agonist can induce primary GC cell apoptosis by enhancing CD8+ T cells via activating NF-κB signaling.


2019 ◽  
Vol 47 (6) ◽  
pp. 2555-2561 ◽  
Author(s):  
Hongtu Wu ◽  
Xian Ding ◽  
Deyu Zhao ◽  
Yong Liang ◽  
Wei Ji

Objective To study the effect of the leukotriene receptor agonist montelukast combined with methylprednisolone on inflammatory response and peripheral blood lymphocyte subset content in children with mycoplasma pneumonia. Methods Seventy-four children were enrolled and randomly divided into a standard treatment group and a montelukast plus methylprednisolone group. Serum levels of inflammatory cytokines and corresponding cytokines of T lymphocyte subsets were measured, and peripheral blood was collected to determine the T cell subset content. Results At 3 days and 7 days after treatment, serum MCP-1, PCT, ICAM-1, CXCL8, CRP, IFN-γ, and IL-17 levels and peripheral blood Th1 and Th17 content were significantly decreased in both groups, while serum IL-4 and TGF-β levels and peripheral blood Treg and Th2 content were significantly increased. However, serum MCP-1, PCT, ICAM-1, CXCL8, CRP, IFN-γ, and IL-17 levels and peripheral blood Th1 and Th17 content were significantly lower while serum IL-4 and TGF-β levels and peripheral blood Treg and Th2 content were significantly higher in the montelukast plus methylprednisolone group compared with the control group. Conclusion Montelukast combined with methylprednisolone for the treatment of mycoplasma pneumonia can inhibit inflammatory responses and regulate levels of Th1/Th2 and Th17/Treg cells.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Mingde Li ◽  
Danlin Yao ◽  
Xiangbo Zeng ◽  
Dimitri Kasakovski ◽  
Yikai Zhang ◽  
...  

Abstract T cells are fundamental effector cells against viruses and cancers that can be divided into different subsets based on their long-term immune protection and immediate immune response effects. The percentage and absolute number of these subsets change with ageing, which leads to a reduced immune response in older individuals. Stem cell memory T cells (TSCM) represent a small population of memory T cells with enhanced proliferation and differentiation properties that are endowed with high potential for maintaining T cell homeostasis. However, whether these cells change with ageing and gender remains unknown. Here, we assayed the distribution of TSCM and other T cell subsets in peripheral blood from 92 healthy subjects (44 females and 48 males) ranging from 3 to 88 years old by flow cytometry. We found that CD4+ and CD8+ TSCM in the circulation have relatively stable frequencies, and the absolute number of CD8+ TSCM decreased with age; however, the ratio of TSCM to the CD4+ or CD8+ naïve population increased with age. Unlike the obvious changes in other T cell subsets with age and gender, the stable level of TSCM in peripheral blood may support their capacity for sustaining long-term immunological memory, while their importance may increase together with ageing.


2017 ◽  
Vol 114 (27) ◽  
pp. E5434-E5443 ◽  
Author(s):  
Joana Dias ◽  
Edwin Leeansyah ◽  
Johan K. Sandberg

Mucosa-associated invariant T (MAIT) cells are a large innate-like T-cell subset in humans defined by invariant TCR Vα7.2 use and expression of CD161. MAIT cells recognize microbial riboflavin metabolites of bacterial or fungal origin presented by the monomorphic MR1 molecule. The extraordinary level of evolutionary conservation of MR1 and the limited known diversity of riboflavin metabolite antigens have suggested that MAIT cells are relatively homogeneous and uniform in responses against diverse microbes carrying the riboflavin biosynthesis pathway. The ability of MAIT cells to exhibit microbe-specific functional specialization has not been thoroughly investigated. Here, we found that MAIT cell responses against Escherichia coli and Candida albicans displayed microbe-specific polyfunctional response profiles, antigen sensitivity, and response magnitudes. MAIT cell effector responses against E. coli and C. albicans displayed differential MR1 dependency and TCR β-chain bias, consistent with possible divergent antigen subspecificities between these bacterial and fungal organisms. Finally, although the MAIT cell immunoproteome was overall relatively homogenous and consistent with an effector memory-like profile, it still revealed diversity in a set of natural killer cell-associated receptors. Among these, CD56, CD84, and CD94 defined a subset with higher expression of the transcription factors promyelocytic leukemia zinc finger (PLZF), eomesodermin, and T-bet and enhanced capacity to respond to IL-12 and IL-18 stimulation. Thus, the conserved and innate-like MAIT cells harbor multiple layers of functional heterogeneity as they respond to bacterial or fungal organisms or innate cytokines and adapt their antimicrobial response patterns in a stimulus-specific manner.


Sign in / Sign up

Export Citation Format

Share Document