scholarly journals Physiological and transcriptome changes induced by exogenous putrescine in anthurium under chilling stress

2020 ◽  
Vol 61 (1) ◽  
Author(s):  
Xiangli Sun ◽  
Zebin Yuan ◽  
Bo Wang ◽  
Liping Zheng ◽  
Jianzhong Tan ◽  
...  

Abstract Background Chilling stress is the major factor limiting plant productivity and quality in most regions of the world. In the present study, we aimed to evaluate the effects of putrescine (Put) and polyamine inhibitor d-arginine (d-arg) on the chilling tolerance of anthurium (Anthurium andraeanum). Results Anthurium seedlings were pretreated with five different concentrations of Put solution or d-arg solution. Subsequently, the seedlings were subjected to chilling stress at 6 °C for 3 days, followed by a recovery at 25 °C for 1 day. Relative permeability of the plasma membrane, as well as physiological and morphologic parameters was assessed during the experiments. Additionally, transcriptome sequencing and patterns of differential gene expression related to chilling response were analyzed by qRT-PCR in 1.0 mM Put-treated and untreated anthurium seedlings. Results indicated that the supplementation of exogenous Put decreased the extent of membrane lipid peroxidation and the accumulation of malondialdehyde (MDA), promoted the antioxidant activities and proline content and maintained the morphologic performances compared with the control group. This finding indicated that the application of exogenous Put could effectively decrease the injury and maintain the quality of anthurium under chilling conditions. In contrast, the treatment of d-arg exhibited the opposite effects, which confirmed the effects of Put. Conclusions This research provided a possible approach to enhance the chilling tolerance of anthurium and reduce the energy consumption used in anthurium production.

2016 ◽  
Vol 96 (5) ◽  
pp. 796-807
Author(s):  
Yi-ping Chen ◽  
Qiang Liu ◽  
Dong Chen

To investigate the mechanism by which laser irradiation enhances the chilling tolerance of wheat seedlings, seeds were exposed to different treatments, and biochemical parameters were measured. Compared with the control group, chilling stress (CS) led to an increase in the concentrations of malondialdehyde (MDA) and H2O2, and decreases in the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), catalase (CAT), peroxidase (POD), and nitric oxide synthase (NOS), and the concentrations of nitric oxide (NO) and protein. Treatment with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), sodium tungstate (ST), and NG-nitro-L-arginine methyl ester (L-NAME) followed by CS resulted in further increases in the concentrations of MDA and H2O2 and further decreases in the other parameters. However, treatment with PTIO, ST, and L-NAME followed by laser irradiation had the opposite effects on these parameters. When the seeds were treated with PTIO, ST, and L-NAME followed by laser and CS, the concentrations of MDA and H2O2 were significantly lower and the other parameters were higher than in the PTIO, ST, and L-NAME plus CS groups. These results suggest that CO2 laser irradiation enhances the chilling tolerance of wheat seedlings by stimulating endogenous NO synthesis.


HortScience ◽  
2018 ◽  
Vol 53 (7) ◽  
pp. 1062-1068
Author(s):  
Mohamad-Hossein Sheikh-Mohamadi ◽  
Nematollah Etemadi ◽  
Mostafa Arab

Excessive heat or cold usually reduces the growth and quality of turfgrass. Genetic variations along with efficient biochemical and physiological mechanisms can diversify the tolerance to heat and cold. This study examined the effects of heat and cold stress on several biochemical and physiological parameters in Iranian tall fescue ecotypes (Festuca arundinacea L.). The control group of plants was maintained under optimal temperatures, whereas other groups were exposed to heat or cold in a growth chamber. The experiment was designed as a split plot, with stress treatments as the main plots and ecotypes as subplots. Physiologically and biochemically, the results revealed that three ecotypes (‘FA1’, ‘FA3’, and ‘FA5’) of the eight ecotypes examined in this study had better abilities to survive the simulated heat and cold stress. Better tolerance to heat and cold in the ‘FA1’, ‘FA3’, and ‘FA5’ ecotypes were probably due to higher levels of enzymatic and nonenzymatic antioxidant activities, maintenance of lower levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2), higher levels of proline and total nonstructural carbohydrates (TNC), along with a more efficient osmotic adjustment. Diamine oxidase (DAO) and polyamine oxidase (PAO) activities increased significantly in ‘FA1’, ‘FA3’, and ‘FA5’ ecotypes. In summary, the strength of tolerance among ecotypes can be ranked as ‘FA1’ > ‘FA3’ > ‘FA5’ > ‘FA2’ > ‘FA6’ > ‘FA4’ > ‘FA7’ > ‘FA8’ under heat stress and ‘FA5’> ‘FA1’ > ‘FA3’ > ‘FA2’ > ‘FA4’ > ‘FA6’ > ‘FA7’ > ‘FA8’ under cold stress.


2018 ◽  
Vol 45 (12) ◽  
pp. 1173 ◽  
Author(s):  
Xinyuan Li ◽  
Lijie Li ◽  
Shiyu Zuo ◽  
Jing Li ◽  
Shi Wei

The ABA-stress-ripening (ASR) gene is an abiotic stress-response gene that is widely present in higher plants. The expression of ASR was recently shown to effectively improve plant tolerance to several abiotic stresses. However, the role of ASR during chilling stress in maize (Zea mays L.) is unclear. In this study, we tested two maize varieties under chilling treatment. Our results showed that Jinyu 5 (JY5), a chilling-sensitive variety, had lower maximum PSII efficiency (Fv/Fm) and higher lipid peroxidation levels than Jidan 198 (JD198) under chilling conditions. At the same time, the enzymes superoxide dismutase (SOD) and peroxidase (POD) were more active in JD198 than in JY5 under chilling conditions. In addition, exogenous ABA spray pretreatments enhanced the chilling tolerance of maize, showing results such as increased Fv/Fm ratios, and SOD and POD activity; significantly reduced lipid peroxidation levels and increased expression of ZmASR1 in both JD198 and JY5 under chilling conditions. Moreover, when the ZmASR1 expression levels in the two maize varieties were compared, the chilling-sensitive line JY5 had significantly lower expression in both the leaves and roots than JD198 under chilling stress, indicating that the expression of ZmASR1 is a chilling response option in plants. Furthermore, we overexpressed ZmASR1 in JY5; this resulted in enhanced maize chilling tolerance, which reduced the decreases in Fv/Fm and the malondialdehyde content and enhanced SOD and POD activity. Overall, these results suggest that ZmASR1 expression plays a protective role against chilling stress in plants.


2014 ◽  
Author(s):  
Amnon Lers ◽  
Majid R. Foolad ◽  
Haya Friedman

ABSTRACT Postharvest losses of fresh produce are estimated globally to be around 30%. Reducing these losses is considered a major solution to ensure global food security. Storage at low temperatures is an efficient practice to prolong postharvest performance of crops with minimal negative impact on produce quality or human health and the environment. However, many fresh produce commodities are susceptible to chilling temperatures, and the application of cold storage is limited as it would cause physiological chilling injury (CI) leading to reduced produce quality. Further, the primary CI becomes a preferred site for pathogens leading to decay and massive produce losses. Thus, chilling sensitive crops should be stored at higher minimal temperatures, which curtails their marketing life and in some cases necessitates the use of other storage strategies. Development of new knowledge about the biological basis for chilling tolerance in fruits and vegetables should allow development of both new varieties more tolerant to cold, and more efficient postharvest storage treatments and storage conditions. In order to improve the agricultural performance of modern crop varieties, including tomato, there is great potential in introgression of marker-defined genomic regions from wild species onto the background of elite breeding lines. To exploit this potential for improving tomato fruit chilling tolerance during postharvest storage, we have used in this research a recombinant inbred line (RIL) population derived from a cross between the red-fruited tomato wild species SolanumpimpinellifoliumL. accession LA2093 and an advanced Solanum lycopersicumL. tomato breeding line NCEBR-1, developed in the laboratory of the US co-PI. The original specific objectives were: 1) Screening of RIL population resulting from the cross NCEBR1 X LA2093 for fruit chilling response during postharvest storage and estimation of its heritability; 2) Perform a transcriptopmic and bioinformatics analysis for the two parental lines following exposure to chilling storage. During the course of the project, we learned that we could measure greater differences in chilling responses among specific RILs compared to that observed between the two parental lines, and thus we decided not to perform transcriptomic analysis and instead invest our efforts more on characterization of the RILs. Performing the transcriptomic analysis for several RILs, which significantly differ in their chilling tolerance/sensitivity, at a later stage could result with more significant insights. The RIL population, (172 lines), was used in field experiment in which fruits were examined for chilling sensitivity by determining CI severity. Following the field experiments, including 4 harvest days and CI measurements, two extreme tails of the response distribution, each consisting of 11 RILs exhibiting either high sensitivity or tolerance to chilling stress, were identified and were further examined for chilling response in greenhouse experiments. Across the RILs, we found significant (P < 0.01) correlation between field and greenhouse grown plants in fruit CI. Two groups of 5 RILs, whose fruits exhibited reproducible chilling tolerant/sensitive phenotypes in both field and greenhouse experiments, were selected for further analyses. Numerous genetic, physiological, biochemical and molecular variations were investigated in response to postharvest chilling stress in the selected RILs. We confirmed the differential response of the parental lines of the RIL population to chilling stress, and examined the extent of variation in the RIL population in response to chilling treatment. We determined parameters which would be useful for further characterization of chilling response in the RIL population. These included chlorophyll fluorescence Fv/Fm, water loss, total non-enzymatic potential of antioxidant activity, ascorbate and proline content, and expression of LeCBF1 gene, known to be associated with cold acclimation. These parameters could be used in continuation studies for the identification and genetic mapping of loci contributing to chilling tolerance in this population, and identifying genetic markers associated with chilling tolerance in tomato. Once genetic markers associated with chilling tolerance are identified, the trait could be transferred to different genetic background via marker-assisted selection (MAS) and breeding. The collaborative research established in this program has resulted in new information and insights in this area of research and the collaboration will be continued to obtain further insights into the genetic, molecular biology and physiology of postharvest chilling tolerance in tomato fruit. The US Co-PI, developed the RIL population that was used for screening and measurement of the relevant chilling stress responses and conducted statistical analyses of the data. Because we were not able to grow the RIL population under field conditions in two successive generations, we could not estimate heritability of response to chilling temperatures. However, we plan to continue the research, grow the RIL progeny in the field again, and determine heritability of chilling tolerance in a near future. The IS and US investigators interacted regularly and plan to continue and expand on this study, since combing the expertise of the Co-PI in genetics and breeding with that of the PI in postharvest physiology and molecular biology will have great impact on this line of research, given the significant findings of this one-year feasibility project.


2017 ◽  
Vol 142 (5) ◽  
pp. 376-384 ◽  
Author(s):  
Ningguang Dong ◽  
Jianxun Qi ◽  
Yuanfa Li ◽  
Yonghao Chen ◽  
Yanbin Hao

The roles of abscisic acid (ABA) and nitric oxide (NO) and the relationship between NO and ABA on chilling resistance and activation of antioxidant activities in walnut (Juglans regia) shoots in vitro under chilling stress were investigated. Walnut shoots were treated with ABA, the NO donor sodium nitroprusside (SNP), ABA in combination with the NO scavenger 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (PTIO), PTIO, SNP in combination with the ABA biosynthesis inhibitor fluridone (Flu), and Flu. Their effects on chilling tolerance, reactive oxygen species (ROS) levels, and the antioxidant defense system were analyzed. The results showed that ABA treatment markedly alleviated the decreases in the maximal photochemical efficiency and survival and the increases in electrolyte leakage and lipid peroxidation induced by chilling stress, suggesting that application of ABA could improve the chilling tolerance. Further analyses showed that ABA enhanced antioxidant defense and slowed down the accumulation of ROS caused by chilling. Similar results were observed when exogenous SNP was applied. ABA in combination with PTIO or PTIO alone differentially abolished these protective effects of ABA. However, treatment with NO in combination with Flu or Flu alone did not affect the SNP-induced protective effect against CI or the activation of antioxidant activities under conditions of chilling stress. In addition, ABA treatment increased the NO content under chilling conditions, which was suppressed by the ABA biosynthesis inhibitor Flu or NO scavenger PTIO. Conversely, SNP application induced the same ABA rise observed in control plants in response to chilling. Taken together, these results suggested that ABA may confer chilling tolerance in walnut shoots in vitro by enhancing the antioxidant defense system, which is partially mediated by NO, preventing the overproduction of ROS to alleviate the oxidative injury induced by chilling.


2002 ◽  
Vol 61 (3) ◽  
pp. 139-151 ◽  
Author(s):  
Céline Darnon ◽  
Céline Buchs ◽  
Fabrizio Butera

When interacting on a learning task, which is typical of several academic situations, individuals may experience two different motives: Understanding the problem, or showing their competences. When a conflict (confrontation of divergent propositions) emerges from this interaction, it can be solved either in an epistemic way (focused on the task) or in a relational way (focused on the social comparison of competences). The latter is believed to be detrimental for learning. Moreover, research on cooperative learning shows that when they share identical information, partners are led to compare to each other, and are less encouraged to cooperate than when they share complementary information. An epistemic vs. relational conflict vs. no conflict was provoked in dyads composed by a participant and a confederate, working either on identical or on complementary information (N = 122). Results showed that, if relational and epistemic conflicts both entailed more perceived interactions and divergence than the control group, only relational conflict entailed more perceived comparison activities and a less positive relationship than the control group. Epistemic conflict resulted in a more positive perceived relationship than the control group. As far as performance is concerned, relational conflict led to a worse learning than epistemic conflict, and - after a delay - than the control group. An interaction between the two variables on delayed performance showed that epistemic and relational conflicts were different only when working with complementary information. This study shows the importance of the quality of relationship when sharing information during cooperative learning, a crucial factor to be taken into account when planning educational settings at the university.


Author(s):  
Yu. V. Antonova ◽  
A. M. Iskandarov ◽  
I. B. Mizonova

Introduction.Coccygodynia is a multidisciplinary disease which is diffi cult to treat. It seriously limits the ability to work and signifi cantly affects the quality of life of patients. The study of somatic dysfunctions in patients with coccygodynia and the analysis of the results of osteopathic treatment of such patients makes it possible to justify the necessity of osteopathic correction of coccygodynia.Goal of the study— to determine the structure of the leading somatic dysfunctions in patients with coccygodynia and to study the effectiveness of osteopathic treatment of this pathology.Materials and methods.The study involved 44 patients from 25 to 65 years old, randomly divided into two groups. The main group of 24 people (20 women and 4 men) received osteopathic treatment, in accordance with the identifi ed leading somatic dysfunctions. Patients of the control group (16 women and 4 men) were treated locally with soft manual techniques (the treatment area was limited by the pelvic region). In order to assess the results of the treatment, we examined the intensity of the pain syndrome and the psycho-emotional state of patients. The severity of the pain syndrome was assessed in accordance with the visual analogue scale (VAS). The psycho-emotional state (with physical and mental components) was assessed with the help of the SF-36 quality of life questionnaire.Results.Somatic dysfunctions typical for patients with coccygodynia have been identifi ed. Osteopathic treatment has proven to be more effective in comparison with local manual therapy of coccygodynia both in early periods and in 3 months after the end of the treatment course.Conclusion.Osteopathic treatment of post-traumatic coccygodynia is effective, and can be recommended for treatment of such patients.


2020 ◽  
pp. 47-50
Author(s):  
N. V. Saraeva ◽  
N. V. Spiridonova ◽  
M. T. Tugushev ◽  
O. V. Shurygina ◽  
A. I. Sinitsyna

In order to increase the pregnancy rate in the assisted reproductive technology, the selection of one embryo with the highest implantation potential it is very important. Time-lapse microscopy (TLM) is a tool for selecting quality embryos for transfer. This study aimed to assess the benefits of single-embryo transfer of autologous oocytes performed on day 5 of embryo incubation in a TLM-equipped system in IVF and ICSI programs. Single-embryo transfer following incubation in a TLM-equipped incubator was performed in 282 patients, who formed the main group; the control group consisted of 461 patients undergoing single-embryo transfer following a traditional culture and embryo selection procedure. We assessed the quality of transferred embryos, the rates of clinical pregnancy and delivery. The groups did not differ in the ratio of IVF and ICSI cycles, average age, and infertility factor. The proportion of excellent quality embryos for transfer was 77.0% in the main group and 65.1% in the control group (p = 0.001). In the subgroup with receiving eight and less oocytes we noted the tendency of receiving more quality embryos in the main group (р = 0.052). In the subgroup of nine and more oocytes the quality of the transferred embryos did not differ between two groups. The clinical pregnancy rate was 60.2% in the main group and 52.9% in the control group (p = 0.057). The delivery rate was 45.0% in the main group and 39.9% in the control group (p > 0.050).


2020 ◽  
Vol 2 (2) ◽  
pp. 112-120
Author(s):  
Nursari Abdul Syukur ◽  
Susi Purwanti

Many mothers who give birth to Sectio Caesarea (SC) do not Initiate Early Breastfeeding (IMD), which fails exclusive breastfeeding. This study aimed to determine the effect of IMD management in postpartum SC mothers on nutritional status, speed of milk production, and quality of breast milk protein. Method: quantitative research with quasi approach experiment. The research design used was a pre-post-test control non-equivalent control group. A sampling of this study used the Consecutive method sampling with a sample of 20 mothers who gave birth by cesarean section (SC). Hypothesis testing uses the independent t-test and the Mann-Whitney test. The study results showed an influence on the management of IMD in postpartum SC mothers on the speed of ASI production (p-value=0.004) and nutritional status (p-value=0.028). There was no effect of IMD management on postpartum SC mothers on the quality of breast milk protein (p-value = 0.543). This study recommends that the hospital implement an IMD promotion program before the abdominal wall is closed as a form of intervention to increase milk production and maternal nutritional status


2016 ◽  
pp. 46-51
Author(s):  
T. Dermenzhy ◽  
◽  
V. Svintitskiy ◽  
S. Nespryadko ◽  
L. Legerda ◽  
...  

The objective: to improve an effectiveness of therapy and quality of life of patients with infiltrative cervical cancer using radical hysterectomy accomplished with nerve-sparing methodology. Patients and Methods: Ninety patients with histologically verified infiltrative cervical cancer were cured with radical hysterectomy (RHE) in the Department of Oncogynecology of National Cancer Institute (Kyiv, Ukraine) in 2012-2016. The age of the patients was from 26 to 65 years (an average age of 42.61±1.06). The patients were distributed in 2 groups: group I treated with nerve-sparing radical hysterectomy (NSRHE), 45 patients, the main group; group II treated with radical hysterectomy (RHE III), the control group, 45 patients. The prognostic indexes in the groups were similar. Results. NSRHE that included the dissection of cardinal ligament, separation of dorsal and anterior layers of uterovesical ligament allowed separate uterine branch of inferior hypogastric plexus, preserve an innervation of urinary bladder and prevent the malfunction of its contractile function at postoperative period. Conclusion. The data of the urodynamic study using cystomanometry performed at pre- and early operative periods have shown that surgical treatment of patients with infiltrative cervical cancer with preservation of the major elements of pelvic autonomic plexuses allows significantly decrease the rate of postoperative urogenical malfunctions. Key words: nerve-sparing radical hysterectomy, cervical cancer, cystomanometry.


Sign in / Sign up

Export Citation Format

Share Document