scholarly journals Performance of cement-stabilized weak subgrade for highway embankment construction in Southeast Nigeria

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Chukwuka Ifediniru ◽  
Nnamdi E. Ekeocha

AbstractSoils with poor shear strength and high compressibility underlie the wetlands of southern Nigeria. They are susceptible to intolerable settlements and account for greater than 60% of the soils in the region. While requiring embankments for any infrastructure construction, these weak soils pose significant threat to the construction and service life of highway pavements in southeastern Nigeria. Therefore, this research investigates shear strength improvement of a highway embankment’s weak subgrade soil after mass stabilization of soil with 6 and 10% Portland cement. The factor of safety against shear failure of the embankment was analyzed for un-stabilized subgrade and then cement-stabilized subgrade. The analysis was carried out for embankment heights of 4, 5, 6 and 7 m using the limit equilibrium method. Thick soft clayey silt with Cu range of 9 to 15 kPa underlay the embankment, upon improvement, the Cu of 154 and 208 kPa was obtained for 6 and 10% stabilization respectively. The FoS for the embankment on Un-stabilized soil ranged from 0.88 for a 7 m embankment to 1.2 for a 4 m embankment. The FoS after mass stabilization of 1 to 5 m soil ranged between 1.77 and 5.22 for the different embankment heights. Stability was better improved as depth of mass stabilization and cement content increased. A linear relationship was observed to exist between the cement content, strength of the improved soils, stabilization depth and the factor of safety.

2018 ◽  
Vol 55 (2) ◽  
pp. 296-302 ◽  
Author(s):  
Shiguo Xiao ◽  
Wei Dong Guo ◽  
Jinxiu Zeng

The factor of safety of a slope (Fs) is invariably assessed using methods underpinned by moment, force, and (or) shear strength equilibrium concerning slip surfaces. Each method inherently embeds some form of limitations, despite being popularly adopted in practice. In this paper, a new Fs is devised using the ratio of ultimate energy (eu, upon sliding) over accumulated “elastic” energy. The Fs is then reduced to a simple expression of the power to shear stress and shear strength, by taking soil as an elastic–plastic material obeying the Mohr–Coulomb failure criterion. This expression empowers significant efficacy in gaining the factor of safety (without involving energy or directions of shear stresses). The Fs values were calculated for three typical slopes concerning various mechanical properties (dilation, Poisson’s ratio, and shear modulus) and effective computational strategies. All of the Fs values (to a congruous accuracy of available methods) were obtained in less than 1% the time of conventional numerical analyses. The proposed Fs, equally applicable to limit equilibrium methods, may be utilized in practice to expedite slope design.


Author(s):  
Gerard Banzibaganye ◽  
Emmanuel Twagirimana ◽  
G. Senthil Kumaran

The highway pavement quality and lifetime depend on its different layers such as subgrade, sub-base and base courses. It is of great importance for subgrade soil layer to have the excellent properties as it is the one to lower or increase the project cost. This paper discusses the utilization of lime and fines from concrete waste to enhance the strength of silty sand soil. California Bearing Ratio (CBR) and shear strength were evaluated. The content such as 0%, 2%, 4%, 6%, 8% and 10% were used. The CBR and shear strength of soil increased with the increase of lime or concrete content. The optimum lime and concrete content which maximized CBR were 6% and 8% respectively. The shear strength improvement was also noticed. No optimum content from both stabilizers which gave maximum shear strength.


2012 ◽  
Vol 446-449 ◽  
pp. 1524-1530
Author(s):  
Ting Ai ◽  
Ru Zhang ◽  
Li Ren ◽  
Wen Xi Fu

In order to implement the non-linear Hoek-Brown (HB) shear strength reduction (SSR) on commercially available softwares, this paper derives the relationship between the Drucker-prager (DP) criterion and HB criterion under the condition of plane strain. The equivalent DP parameters can be approximately estimated after serious transformations of parameters between the HB and Mohr-Coulomb (MC) yield functions. To assess the effect of dilation on the stability of slope, the non-associated flow rule, which cannot be contained in the existing limit equilibrium methods, is selected in our analysis, and the SSR-based results of a simple slope indicate that: If the angle of dilatancy ψ is taken to be zero, the factor of safety calculated by the SSR method is very close to that by the limit equilibrium method; if ψ is greater than zero, the factor of safety calculated by the SSR method is greater than that by the limit equilibrium method, and the effect of dilation on the stability of slope can be approximately described by a liner function.


2021 ◽  
Vol 11 (10) ◽  
pp. 4568
Author(s):  
Muhammad Israr Khan ◽  
Shuhong Wang

Assessment and analysis of soil slope stability is an important part of geotechnical engineering at all times. This paper examines the assessment of soil slope stability in fine-grained soils. The effect of change in shear strength (τ), shear stress (σ) and slope angle (β) on the factor of safety has been studied. It correlates shear strength with slope angle and shear stress by considering the horizontal seismic coefficients in both saturated and unsaturated conditions. The slope failure surface was considered a circular slip surface. Statistical package for social sciences (SPSS) and Slide, numerical modeling software and limit equilibrium slope stability analysis software, respectively, are used to find out the correlations between the three basic parameters. The slope angle varied from 70 to 88 degrees, which are the most critical values for slope angles, and a total of 200 analyses were performed. τ, β and σ are correlated, and the correlations are provided in the results section. The results indicate that the correlations developed between the parameters have a very close relationship. The applicability of the developed equations is above 99%. These correlations are applicable in any type of soil slope stability analysis, where the value of shear strength and factor of safety is required with the variation of slope angle and shear stress.


2020 ◽  
Vol 12 (3) ◽  
pp. 1264 ◽  
Author(s):  
Hanbing Liu ◽  
Xiang Lyu ◽  
Jing Wang ◽  
Xin He ◽  
Yunlong Zhang

Permafrost and seasonal permafrost are widely distributed in China and all over the world. The failure of soil is mainly shear failure, and the strength of soil mainly refers to the shear strength. The two most important parameters of shear strength are cohesion and angle of internal friction. In order to ensure the sustainability of road construction in seasonal permafrost area, the microstructure of subgrade soil was observed and analyzed. First, three subgrade soils with different plasticity indices were prepared for triaxial test and scanning electron microscope (SEM). Then, these specimens underwent freezing–thawing (FT) cycles and were obtained shear strength parameters by triaxial shear test. Next, the microstructure images of soil were obtained by SEM, and the microstructure parameters of soil were extracted by image processing software. Finally, the correlation method was used to analyze the dependence between the shear strength parameters and the microstructure parameters. Results revealed that subgrade soils with a higher plasticity index had higher cohesion and lower angle of internal friction. In addition, with the increase of the number of FT cycles, the diameter and number of soil particles and pores tend to increase, while the roundness, fractal dimension and directional probabilistic entropy of particles decreased. With the increase of the plasticity index, the particle and pore diameter decreased, but the particle and pore number increased. Besides, particle roundness had the greatest influence on the cohesion and angle of internal friction of shear strength parameters.


2020 ◽  
Vol 4 (2) ◽  
pp. 34-38
Author(s):  
Muhammad Israr Khan ◽  
Shuhong Wang ◽  
Zhangze .

In this paper, an earthen dam is analysed using different soil layers having different soil properties and dimensions. Normally a slope fail when the shear strength reduces from the minimum required value which keeps it stable. Internal erosion is the main cause which causes a dam to fail and it is mainly due seepage with time. A detail analysis of a predefined dam slope is performed in different layers to check the seepage variation as well as the factor of safety. Different soil layers and properties were used such that it is investigated from a fail condition to a complete stable condition. Limit equilibrium and finite element approaches are used. Correlations for factor of safety between these two approaches are also developed. These correlations and results could be used as guidelines in any dam or slope safety calculation.


2016 ◽  
Vol 53 (9) ◽  
pp. 1522-1532 ◽  
Author(s):  
Farshid Vahedifard ◽  
Shahriar Shahrokhabadi ◽  
Dov Leshchinsky

This study presents a methodology to determine the stability and optimal profile for slopes with concave cross section under static and seismic conditions. Concave profiles are observed in some natural slopes suggesting that such geometry is a more stable configuration. In this study, the profile of a concave slope was idealized by a circular arc defined by a single variable, the mid-chord offset (MCO). The proposed concave profile formulation was incorporated into a limit equilibrium–based log spiral slope stability method. Stability charts are presented to show the stability number, MCO, and mode of failure for homogeneous slopes corresponding to the most stable configuration under static and pseudostatic conditions. It is shown that concave profiles can significantly improve the stability of slopes. Under seismic conditions, the impact of concavity is most pronounced. Good agreement was demonstrated upon comparison of the results from the proposed method against those attended from a rigorous upper bound limit analysis. The proposed methodology, along with recent advances in construction technology, can be employed to use concave profiles in trenches, open mine excavations, earth retaining systems, and naturally cemented and stabilized soil slopes. The results presented provide a useful tool for preliminary evaluation for adopting such concave profiles in practice.


1992 ◽  
Vol 29 (6) ◽  
pp. 971-988 ◽  
Author(s):  
Z. Chen ◽  
N. R. Morgenstern ◽  
D. H. Chan

The mechanism of progressive failure is well understood as one which involves nonuniform straining of a strain-weakening material. Traditional limit equilibrium analysis cannot be used alone to obtain a rational solution for progressive failure problems because the deformation of the structure must be taken into account in the analysis. The failure of the Carsington Dam during construction in 1984 has been attributed to progressive failure of the underlying yellow clay and the dam core materials. The dam was monitored extensively prior to failure, and an elaborate geotechnical investigation was undertaken after failure. The limit equilibrium analysis indicated that the factors of safety were over 1.4 using peak strength of intact clay material or 1.2 based on reduced strength accounting for preshearing of the yellow clay layer. Factors of safety were found to be less than unity if residual strengths were used. The actual factor of safety at failure was, of course, equal to one. By using the finite element analysis with strain-weakening models, the extent and degree of weakening along the potential slip surface were calculated. The calculated shear strength was then used in the limit equilibrium analysis, and the factor of safety was found to be 1.05, which is very close to the actual value of 1.0. More importantly, the mechanism of failure and the initiation and propagation of the shear zones were captured in the finite element analysis. It was also found that accounting explicitly for pore-water pressure effects using the effective stress approach in the finite element and limit equilibrium analyses provides more realistic simulations of the failure process of the structure than analyses based on total stresses. Key words : progressive failure, strain softening, finite element analysis, dams.


Sign in / Sign up

Export Citation Format

Share Document