scholarly journals New lipase-producing Streptomyces isolated from halo-alkaline habitat in Wadi El Natrun: polyphasic identification and statistical optimization of enzyme production

Author(s):  
Mohamed A. Mohamed ◽  
Hassan M. Awad

Abstract Background Bioprospecting lipase producers in non-conventional habitats are the way to find special enzymes of diverse applications. Halo-alkaline marshes in Wadi El Natrun in Egypt are some of the most stable ecological systems in the world, and because of the double extremities of alkalinity and salinity, they harbor individual microbes capable of adapting stress conditions. Results Eight strains were recovered from the coastline soil of Al-Beida Lake in Wadi El Natrun and have been tested for lipase production. Among the eight isolates, the strain SBLWN_MH2 was the most active producer of lipase (7.5 U/ml). The crude SBLWN_MH2 lipase showed activity over a wide pH range (3.5 to 13) with an optimum pH at 10.5, and it was able to show more than 75% of its highest activity at pH elevated up to 13. The identification using phenotypic and genotypic methods strongly indicated that the strain SBLWN_MH2 belonged to the genus Streptomyces with a similarity of 99%. Thus, it has been given the suggested name Streptomyces sp. SBLWN_MH2 (MG593538). SBLWN_MH2 produced extracellular lipase in modified starch casein medium supplemented with different oils or Tween-80, and the potential production rate has been attained in the case of linseed oil after 3 days. Further experiments have been carried out to optimize medium composition through Box-Behnken design and response surface methodology, and it was possible to achieve more than 3.5-fold increase in lipase production. Conclusions The present study indicates that Streptomyces sp. SBLWN_MH2 is a potential lipase producer and could be fruitfully employed in the large-scale production of highly alkaline lipase.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Leticia Miranda Cesário ◽  
Giovanna Pinto Pires ◽  
Rafael Freitas Santos Pereira ◽  
Elisabete Fantuzzi ◽  
André da Silva Xavier ◽  
...  

Abstract Lipases are triacylglycerol hydrolases that catalyze hydrolysis, esterification, interesterification, and transesterification reactions. These enzymes are targets of several industrial and biotech applications, such as catalysts, detergent production, food, biofuels, wastewater treatment, and others. Microbial enzymes are preferable for large scale production due to ease of production and extraction. Several studies have reported that lipases from filamentous fungi are predominantly extracellular and highly active. However, there are many factors that interfere with enzyme production (pH, temperature, medium composition, agitation, aeration, inducer type, and concentration, etc.), making control difficult and burdening the process. This work aimed to optimize the lipase production of four fungal isolates from oily residues (Penicillium sp., Aspergillus niger, Aspergillus sp., and Aspergillus sp.). The lipase-producing fungi isolates were morphologically characterized by optical and scanning electron microscopy. The optimal lipase production time curve was previously determined, and the response variable used was the amount of total protein in the medium after cultivation by submerged fermentation. A complete factorial design 32 was performed, evaluating the temperatures (28 °C, 32 °C, and 36 °C) and soybean oil inducer concentration (2%, 6%, and 10%). Each lipase-producing isolate reacted differently to the conditions tested, the Aspergillus sp. F18 reached maximum lipase production, compared to others, under conditions of 32 °C and 2% of oil with a yield of 11,007 (µg mL−1). Penicillium sp. F04 achieved better results at 36 °C and 6% oil, although for Aspergillus niger F16 was at 36 °C and 10% oil and Aspergillus sp. F21 at 32 °C and 2% oil. These results show that microorganisms isolated from oily residues derived from environmental sanitation can be a promising alternative for the large-scale production of lipases. Graphical Abstract


2021 ◽  
Vol 68 (3) ◽  
pp. 575-586
Author(s):  
Noura Semache ◽  
Fatiha Benamia ◽  
Bilal Kerouaz ◽  
Inès Belhaj ◽  
Selma Bounour ◽  
...  

This work mainly focused on the production of an efficient, economical, and eco-friendly lipase (AKL29) from Actinomadura keratinilytica strain Cpt29 isolated from poultry compost in north east of Algeria, for use in detergent industries. AKL29 shows a significant lipase activity (45 U/mL) towards hydrolyzed triacylglycerols, indicating that it is a true lipase. For maximum lipase production the modeling and optimization of potential culture parameters such as incubation temperature, cultivation time, and Tween 80 (v/v) were built using RSM and ANN approaches. The results show that both the two models provided good quality predictions, yet the ANN showed a clear superiority over RSM for both data fitting and estimation capabilities. A 4.1-fold increase in lipase production was recorded under the following optimal condition: incubation temperature (37.9 °C), cultivation time (111 h), and Tween 80 (3.27%, v/v). Furthermore, the partially purified lipase showed good stability, high compatibility, and significant wash performance with various commercial laundry detergents, making this novel lipase a promising potential candidate for detergent industries.


2014 ◽  
Vol 80 (13) ◽  
pp. 4003-4011 ◽  
Author(s):  
Colin J. Jackson ◽  
Christopher W. Coppin ◽  
Paul D. Carr ◽  
Alexey Aleksandrov ◽  
Matthew Wilding ◽  
...  

ABSTRACTMicrobial metalloenzymes constitute a large library of biocatalysts, a number of which have already been shown to catalyze the breakdown of toxic chemicals or industrially relevant chemical transformations. However, while there is considerable interest in harnessing these catalysts for biotechnology, for many of the enzymes, their large-scale production in active, soluble form in recombinant systems is a significant barrier to their use. In this work, we demonstrate that as few as three mutations can result in a 300-fold increase in the expression of soluble TrzN, an enzyme fromArthrobacter aurescenswith environmental applications that catalyzes the hydrolysis of triazine herbicides, inEscherichia coli. Using a combination of X-ray crystallography, kinetic analysis, and computational simulation, we show that the majority of the improvement in expression is due to stabilization of the apoenzyme rather than the metal ion-bound holoenzyme. This provides a structural and mechanistic explanation for the observation that many compensatory mutations can increase levels of soluble-protein production without increasing the stability of the final, active form of the enzyme. This study provides a molecular understanding of the importance of the stability of metal ion free states to the accumulation of soluble protein and shows that differences between apoenzyme and holoenzyme structures can result in mutations affecting the stability of either state differently.


2017 ◽  
Vol 201 ◽  
pp. 63-70 ◽  
Author(s):  
Nian Zhao ◽  
Ping Li ◽  
Xin Mu ◽  
Chuanfang Liu ◽  
Fuxing Sun ◽  
...  

A novel ultra-stable metal–organic framework, MCIF-1, [Cu2(DCI)2](MeCN), based on dicyanoimidazole and Cu(i), has been synthesized at room temperature successfully. MCIF-1 shows excellent water stability and can retain crystallinity after soaking in water for about one week. In addition, MCIF-1 also shows exceptional resistance under both acidic and basic conditions within a large pH range from 0 to 13.5. What is more, after modifying the synthesis procedure slightly, we can produce this material in a large scale during a very short time. Mild synthesis conditions, excellent stability and ease of large scale production give MCIF-1 great potential for practical use.


Biology ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 171
Author(s):  
Jianming Zhang ◽  
Yushan Bu ◽  
Chengcheng Zhang ◽  
Huaxi Yi ◽  
Daqun Liu ◽  
...  

At present, De Man, Rogosa and Sharpe (MRS) broth is the medium of choice for promoting bacteriocin production. However, this medium is expensive and not applicable for large-scale production. Therefore, a low-cost and high-efficiency culture medium for bacteriocin Lac-B23 production by Lactobacillus plantarum J23 was developed. First, the effects of the composition of MRS broth on bacteriocin Lac-B23 production and bacterial growth were researched by a one variable at a time approach. Then, a Plackett-Burman design was used to screen significant components for production. Finally, the steepest ascent and central composite designs were used to obtain an optimum medium. The final composition of the modified MRS was much simpler than MRS broth, and the modified MRS contained only glucose, yeast extract, dipotassium phosphate, manganese sulfate monohydrate, Tween 80 and sodium acetate anhydrous. The highest bacteriocin Lac-B23 production reached 2560 activity units (AU)/mL in the modified MRS, which is nine times higher than that in MRS broth (280 AU/mL). Meanwhile, the cost per liter of the modified MRS (8.56 Ren Min Bi (RMB)/L) is 34.70% the cost of MRS broth (13.11 RMB/L), and the cost per arbitrary units of bacteriocin Lac-B23 in the modified MRS is approximately fourteen times more convenient (3.34 RMB/106 AU) than in the MRS broth (46.82 RMB/106 AU).


2019 ◽  
Vol 27 (02) ◽  
pp. 8-19
Author(s):  
Naramchimeg B ◽  
Altantsetseg Kh ◽  
Urantulkhuur B

There are many factors that influence the character of bacterial metabolism and enzyme production.For themaximum production of the desired products, the media components and fermentation conditions should beoptimized. In our investigation, we improved the amylase production of Bacillus subtilis M4 mutant strain bythe combination of two optimization techniques. The cultural conditions (time period, temperature, pH,inoculum volume) and medium ingredients (various carbon, organic and inorganic nitrogen sources, chlorides, sulfates, phosphates, carbonates) were optimized by one factor at a time methodology (OFAT) and response surface methodology (RSM) to increase the amylase production. The optimum conditions for amylase production were found be the following: 35ºC, pH range 7 and incubation time 72h, inoculum volume 8% (v/v). Optimum medium composition for amylase production was the following: starch 12.9 g, peptone 9.75g, calcium carbonate 0.439 g, magnesium sulfate 0.464 g and potassium chloride 0.464 g per liter. Whenapplied to our optimized medium in the fermentation process, the enzyme activity increased from 0.741 to1.58 U/ml, which means a 2.1-fold increase compared to the original medium.


HortScience ◽  
2017 ◽  
Vol 52 (6) ◽  
pp. 892-895
Author(s):  
Jane Kahia ◽  
Siaka Kone ◽  
Lucien Diby ◽  
Georges Ngoran ◽  
Colombe Dadjo ◽  
...  

Theobroma cacao L. (cacao) is a major tropical crop, grown for its oil-rich seed, which is used in the manufacture of chocolate, its derivatives, and cosmetics. Cacao is cultivated mainly by smallholders and represents a significant export commodity for some developing countries such as Côte d’Ivoire. It is conventionally propagated by seeds, grafting, and cuttings. Somatic embryogenesis offers an alternative method for propagation where large-scale production of planting materials is possible. In the current study, the effect of different concentrations of 2, 4-dichlorophenoxyacetic acid (2, 4-D) and kinetin on induction of somatic embryogenesis and plantlet regeneration in two cocoa clones (coded as C1 and C14) were evaluated. Flowers were collected early in the morning, sterilized, explants excised and cultured on Driver, and Kuniyuki Walnut (DKW) media supplemented with different concentrations of 2, 4-D (9, 10, and 20 µM) and kinetin (0.5, 1, 2.5, 5, 10, and 25 µM) in separate experiments. The frequently used media in somatic embryogenesis of cacao [DKW supplemented with 0.022 µM thidiazuron (TDZ) and 9 µM 2, 4-D] was used as a control. The results of the study showed that explants cultured on media supplemented with 10 µM 2, 4-D and 5 µM kinetin produced the highest (28.0 ± 1.1) mean number of embryos/explant in C1 and this was a 9-fold increase in the number of embryos compared with the control. Explants cultured on media supplemented with 10 µM 2, 4-D and 2.5 µM kinetin produced the highest (7.0 ± 4.0) mean number of embryos/explant in C14 whereas the explants cultured on media supplemented with 20 µM 2, 4-D and 2.5 µM kinetin gave the highest (22.0 ± 1.7) mean number of embryos in clone C1 and C14. The regenerated embryos were germinated and successfully weaned in the green house with a survival rate of 70% being recorded. The paper describes an improved protocol compared with previous work in terms of embryo recovery and survival rate of the elite clones of cocoa through somatic embryogenesis. The results of the current study confirm that somatic embryogenesis of cacao clones is genotype dependent.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1328 ◽  
Author(s):  
Zelma Faisal ◽  
Sándor Kunsági-Máté ◽  
Beáta Lemli ◽  
Lajos Szente ◽  
Dominik Bergmann ◽  
...  

Citrinin (CIT) is a nephrotoxic mycotoxin produced by Aspergillus, Penicillium, and Monascus genera. It appears as a contaminant in grains, fruits, and spices. After oral exposure to CIT, its major urinary metabolite, dihydrocitrinone (DHC) is formed, which can be detected in human urine and blood samples. Cyclodextrins (CDs) are ring-shaped molecules built up from glucose units. CDs can form host-guest type complexes with several compounds, including mycotoxins. In this study, the complex formation of DHC with native and chemically modified beta- and gamma-cyclodextrins was tested at a wide pH range, employing steady-state fluorescence spectroscopic and modeling studies. The weakly acidic environment favors the formation of DHC-CD complexes. Among the CDs tested, the quaternary-ammonium-γ-cyclodextrin (QAGCD) formed the most stable complexes with DHC. However, the quaternary-ammonium-β-cyclodextrin (QABCD) induced the strongest enhancement in the fluorescence signal of DHC. Our results show that some of the chemically modified CDs are able to form stable complexes with DHC (logK = 3.2–3.4) and the complex formation can produce even a 20-fold increase in the fluorescence signal of DHC. Considering the above-listed observations, CD technology may be a promising tool to increase the sensitivity of the fluorescence detection of DHC.


2013 ◽  
Vol 791-793 ◽  
pp. 116-119 ◽  
Author(s):  
Peng Ren ◽  
Wei Hua Lin

Lipase is a kind of important hydrolase. It was widely used in the fields of food, leather, detergent and pharmaceutical. The production of lipase from Arthrobacter sp. SD5 was studied in the present paper. The medium composition and culture condition were optimized in order to improve lipase production. The results showed the best optimum conditions were on the following: culture temperature (40°C); initial pH value (8.0); liquid volume (20%); carbon source (olive oil, 2.5%); nitrogen source (peptone, 1.0%); biosurfactant (Tween-80, 0.2%).


Sign in / Sign up

Export Citation Format

Share Document