scholarly journals Phage therapy as a revolutionary medicine against Gram-positive bacterial infections

Author(s):  
Archana Loganathan ◽  
Prasanth Manohar ◽  
Kandasamy Eniyan ◽  
C. S. VinodKumar ◽  
Sebastian Leptihn ◽  
...  

Abstract Background Antibiotic resistance among pathogenic bacteria has created a global emergency, prompting the hunt for an alternative cure. Bacteriophages were discovered over a century ago and have proven to be a successful replacement during antibiotic treatment failure. This review discusses on the scientific investigation of phage therapy for Gram-positive pathogens and general outlook of phage therapy clinical trials and commercialization. Main body of the abstract This review aimed to highlight the phage therapy in Gram-positive bacteria and the need for phage therapy in the future. Phage therapy to treat Gram-positive bacterial infections is in use for a very long time. However, limited review on the phage efficacy in Gram-positive bacteria exists. The natural efficiency and potency of bacteriophages against bacterial strains have been advantageous amidst the other non-antibiotic agents. The use of phages to treat oral biofilm, skin infection, and recurrent infections caused by Gram-positive bacteria has emerged as a predominant research area in recent years. In addition, the upsurge in research in the area of phage therapy for spore-forming Gram-positive bacteria has added a wealth of information to phage therapy. Short conclusion We conclude that the need of phage as an alternative treatment is obvious in future. However, phage therapy can be used as reserve treatment. This review focuses on the potential use of phage therapy in treating Gram-positive bacterial infections, as well as their therapeutic aspects. Furthermore, we discussed the difficulties in commercializing phage drugs and their problems as a breakthrough medicine.

Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1000
Author(s):  
Lucía Fernández ◽  
María Dolores Cima-Cabal ◽  
Ana Catarina Duarte ◽  
Ana Rodríguez ◽  
María del Mar García-Suárez ◽  
...  

Pneumonia is an acute pulmonary infection whose high hospitalization and mortality rates can, on occasion, bring healthcare systems to the brink of collapse. Both viral and bacterial pneumonia are uncovering many gaps in our understanding of host–pathogen interactions, and are testing the effectiveness of the currently available antimicrobial strategies. In the case of bacterial pneumonia, the main challenge is antibiotic resistance, which is only expected to increase during the current pandemic due to the widespread use of antibiotics to prevent secondary infections in COVID-19 patients. As a result, alternative therapeutics will be necessary to keep this disease under control. This review evaluates the advantages of phage therapy to treat lung bacterial infections, in particular those caused by the Gram-positive bacteria Streptococcus pneumoniae and Staphylococcus aureus, while also highlighting the regulatory impediments that hamper its clinical use and the difficulties associated with phage research.


2017 ◽  
Vol 21 (09) ◽  
pp. 581-588 ◽  
Author(s):  
Merlyn M. Thandu ◽  
Silvia Cavalli ◽  
Giada Rossi ◽  
Claudia B. Rizzardini ◽  
Daniele Goi ◽  
...  

The present work describes the use of a magnetic porphyin (5-(4-carboxy-phenyl)-10,15,20-triphenyl-21H, 23H-porphyrin TPP) nanoconjugate (SPION-TPP) for destroying pathogenic bacteria followed by the recovery of the magnetic photosensitizer. SPION-TPP was tested for its activity against two different gram-positive bacterial strains (Staphylococcus aureus and Steptoccoccus mutans). It is observed that SPION-TPP at a very low concentration of 0.5 [Formula: see text]M is effective in destroying gram-positive bacteria (10[Formula: see text]–10[Formula: see text] CFU ml[Formula: see text] S. aureus with several orders reduction and few orders in S. mutans. The aim of this work is to combine photoactivity against microorganisms imparted by the photosensitizer with the possibility of recovering the nanoconstruct with magnets for disposal/reuse.


Author(s):  
LONG HOANG NGO ◽  
THI HAI YEN NGUYEN ◽  
VU KHAC TRAN ◽  
VU VAN DOAN ◽  
MINH VAN NGUYEN ◽  
...  

Objectives: Infectious diseases caused by bacteria are a leading cause of death worldwide. Hence, the objectives of the study are aimed to evaluate the antibacterial activity against five human pathogenic bacteria of methanolic extracts from 66 plants collected from Vietnam. Methods: The broth microdilution method was used to determine the minimum inhibitory concentration (MIC) of methanol extracts of 66 plant species against five bacterial strains. Results: In this study, all the plant extracts were active against at least one train with MIC values ranging from 24 to 2048 μg/mL. Twenty-five plant extracts were active against all three Gram-positive bacteria (Bacillus cereus, Bacillus subtilis, and Staphylococcus aureus). Of these, the extracts of Macaranga trichocarpa (Rchb. f. and Zoll.) Mull. Arg. (Euphorbiaceae), Calophyllum inophyllum L. (Clusiaceae) and Caryodaphnopsis baviensis (Lecomte) Airy Shaw (Lauraceae) exhibited the highest antibacterial activity (MIC =24–128 μg/mL), followed by extracts of Betula alnoides Buch.- Ham. e × . D. Don (Betulaceae), Acronychia pedunculata (L.) Miq. (Rutaceae), Croton alpinus A. Chev. ex Gagnep. (Euphorbiaceae) (MIC =64–256 μg/mL). Furthermore, the extract of Rhus chinensis Mill. (Anacardiaceae) and Annona reticulata L. (Annonaceae) exhibited potent antibacterial activity against the two Bacillus species (MIC =32–64 μg/mL). Conclusion: Results of this study reveal that plant extracts from Vietnam have highly antibacterial activity against Gram-positive bacteria. These results suggest that Vietnamese plant extracts may be a rich source of antibacterial drugs.


2021 ◽  
Author(s):  
Xuemei Li ◽  
Zhipeng Du ◽  
Ziwei Tang ◽  
Qin Wen ◽  
Qingfeng Cheng ◽  
...  

Abstract Background: When a diabetic foot ulcer (DFU) is complicated by necrotizing fasciitis (DNF), this may increase the risk for amputation and mortality, making DNF treatment more complicated, and may eventually lead to amputation and mortality. DNF treatment must include the appropriate antibiotic intervention. However, studies on the distribution and drug sensitivity of pathogenic bacteria in DNF patients remain lacking. This study investigated the distribution and susceptibility of pathogenic bacteria in DNF patients, and provides empirical antibacterial guidance for the clinic.Methods: In a single diabetic foot center, the results from microbial cultures and drug susceptibility tests of patients with DNF from October 2013 to December 2020 were collected and analyzed.Results: A total of 101 DNF patients were included in this study, of whom 94 had positive culture test results. A total of 124 pathogens were cultured, including 76 Gram-positive bacterial strains, 42 Gram-negative bacterial strains, and six fungal strains. Polymicrobial infections accounted for 26.7% and monomicrobial infections accounted for 66.3%. Staphylococcus aureus was the most common bacterium isolated, followed by Enterococcus faecalis and Streptococcus agalactiae. Pseudomonas aeruginosa, Klebsiella pneumoniae, and Proteus mirabilis were the most common Gram-negative bacteria. Thirty-five strains of multi-drug resistant (MDR) bacteria were isolated, representing 28.2% of the total isolates. Gram-positive bacteria were more sensitive to levofloxacin, moxifloxacin, vancomycin, teicoplanin, tigecycline, and linezolid, while Gram-negative bacteria were more sensitive to amikacin, piperacillin/tazobactam, cefoperazone/sulbactam, ceftazidime, cefepime, imipenem, and meropenem. Conclusions: Gram-positive bacteria were the main bacteria isolated from DNF patients. The bacterial composition, the proportion of MDR bacteria among the pathogens, and high risk for amputation should be fully considered in the initial empirical medication, and broad-spectrum antibacterials are recommended.


Revista CERES ◽  
2013 ◽  
Vol 60 (5) ◽  
pp. 731-734 ◽  
Author(s):  
Álan Alex Aleixo ◽  
Karina Marjorie Silva Herrera ◽  
Rosy Iara Maciel de Azambuja Ribeiro ◽  
Luciana Alves Rodrigues dos Santos Lima ◽  
Jaqueline Maria Siqueira Ferreira

Baccharis trimera (Less.) (Asteraceae), popularly know as "carqueja", is a species commonly used in folk medicine for the treatment or prevention of diseases. In this context, the purpose of this work was to study the antibacterial activity of crude hydroalcoholic extract from Baccharis trimera against Gram-positive bacterial strains (Staphylococcus aureus ATCC 29213, Staphylococcus saprophyticus ATCC 15305, Staphylococcus epidermidis ATCC 12228, Enterococcus faecalis ATCC 19433) and Gram-negative bacteria (Escherichia coli EHEC ATCC 43895, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 27736, Salmonella typhi ATCC 19430) of clinical interest. Antibacterial susceptibility was evaluated by broth microdilution assay following the CLSI (formerly the NCCLS) guidelines. The extract from B. trimera showed antibacterial activity against Gram-positive bacteria and the most interesting result was obtained against S. epidermidis that presented Minimal Inhibitory Concentration of 250μg/mL. These results indicate that B. trimera have bacterisostatic potential against Gram-positive bacterial strains of medical interest and could serve as a base for further studies on the use of isolated compounds from this species as future antimicrobials.


2017 ◽  
Vol 63 (11) ◽  
pp. 865-879 ◽  
Author(s):  
Ayman El-Shibiny ◽  
Salma El-Sahhar

Since their discovery in 1915, bacteriophages have been used to treat bacterial infections in animals and humans because of their unique ability to infect their specific bacterial hosts without affecting other bacterial populations. The research carried out in this field throughout the 20th century, largely in Georgia, part of USSR and Poland, led to the establishment of phage therapy protocols. However, the discovery of penicillin and sulfonamide antibiotics in the Western World during the 1930s was a setback in the advancement of phage therapy. The misuse of antibiotics has reduced their efficacy in controlling pathogens and has led to an increase in the number of antibiotic-resistant bacteria. As an alternative to antibiotics, bacteriophages have become a topic of interest with the emergence of multidrug-resistant bacteria, which are a threat to public health. Recent studies have indicated that bacteriophages can be used indirectly to detect pathogenic bacteria or directly as biocontrol agents. Moreover, they can be used to develop new molecules for clinical applications, vaccine production, drug design, and in the nanomedicine field via phage display.


2014 ◽  
Vol 8 (3) ◽  
pp. 40-45
Author(s):  
Zina Hashem Shehab ◽  
Huda Suhail Abid ◽  
Sumaya Fadhil Hamad ◽  
Sara Haitham

The study was conducted to evaluate the inhibitory activity of methanol extract of Gardenia jasminoides leaves compared with leaf crude extracts for some organic solvents namely Methanol, Ethanol, Petroleum ether, Asetone and Chloroform on growth of some pathogenic bacteria and yeast, which included four gram positive isolates Staphylococcus aureus, Enterococcus faecalis, Streptococcus pyogenes and Bacillus cereus and gram negative isolates Escherichia coli, Salmonella typhi, Proteus vulgaris and Pseudomonas aeruginosa and some yeasts Candida albicans and Saccharomyces boulardii, by using well diffusion method. The inhibitory activity of extracts in the tested bacterial strains and yeasts was varied according to the type of extracting solvents and are tested microorganisms. The methanol callus extract which grown on Murashige and Skoog (MS) media by using (Naphthalen acitic acid) NAA and (Benzyle adenine) BA as growth regulator highly effective as compared to the other extracts as for inhibition of three gram positive bacteria and three gram negative bacteria,which include Staphylococcus aureus and, Proteus vulgaris, followed by acetone and ethanolic extracts which include two gram positive bacteria and two gram negative bacteria. All extracts had highly effect in growth of Candida albicans while all crude extracts didn’t show any sensitivity against Saccharomyces boulardii, and when we’d done (High Performance Liquid Chromatography) HPLC test for detection of some active compound we found Quinic acid, Iridiods glycosides and Crocin which its rate in fresh callus was higher than fresh leaves.


2020 ◽  
Vol 16 (2) ◽  
Author(s):  
P. M. Ridzuan ◽  
Hairul Aini Hamzah ◽  
Anis Shah ◽  
Norazian Mohd Hassan ◽  
Baharudin Roesnita

Antibacterial activity of different types of P. odorata leaf extracts was evaluated in combination with standard antibiotics. Persicaria. odorata leaves were extracted with n-hexane (n-hex), dichloromethane (DCM) and methanol (MeOH).  Each extract was applied on vancomycin (30µg), erythromycin (15µg) and gentamicin (10µg) discs, respectively. Disk diffusion method was used to evaluate the synergistic activity of each combination on Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pyogenes, Streptococcus pneumoniae, Pseudomonas aeruginosa, Salmonella typhi, and Escherichia coli. Minimum inhibitory concentration (MIC) and gas chromatography mass spectrometry (GCMS) analysis was performed on the active extract. Synergistic effects seen were mainly from the n-hex+antibiotics combinations, mainly on the Gram-positive bacteria (7 additive, 5 antagonistic), with MIC range from 50 µg/ml to 100 µg/ml, as well as Gram-negative bacteria (2 additive, 2 indifferent, 5 antagonistic). In particular, synergism showed by the combination of n-hex+van were all additive against the susceptible bacteria. DCM extract combination showed synergistic effects on three Gram-positive species (S. aureus, S. epidermidis, S. pyogenes). Meanwhile, MeOH+antibiotics combination showed significant additive synergistic effects (p<0.05) on S. aureus and S. epidermidis.  The major compounds of leaves extract were decanal and β-citral. n-Hex extract superiorly inhibited Gram-positive bacteria growth as compared to DCM and MeOH extracts. The additive synergistic property of the n-hex P. odorata extract could be further studied for possible use as an antibacterial agent.


2020 ◽  
Vol 8 (2) ◽  
pp. 191 ◽  
Author(s):  
Despoina Koulenti ◽  
Elena Xu ◽  
Andrew Song ◽  
Isaac Yin Sum Mok ◽  
Drosos E. Karageorgopoulos ◽  
...  

Antimicrobial agents are currently the mainstay of treatment for bacterial infections worldwide. However, due to the increased use of antimicrobials in both human and animal medicine, pathogens have now evolved to possess high levels of multi-drug resistance, leading to the persistence and spread of difficult-to-treat infections. Several current antibacterial agents active against Gram-positive bacteria will be rendered useless in the face of increasing resistance rates. There are several emerging antibiotics under development, some of which have been shown to be more effective with an improved safety profile than current treatment regimens against Gram-positive bacteria. We will extensively discuss these antibiotics under clinical development (phase I-III clinical trials) to combat Gram-positive bacteria, such as Staphylococcus aureus, Enterococcus faecium and Streptococcus pneumoniae. We will delve into the mechanism of actions, microbiological spectrum, and, where available, the pharmacokinetics, safety profile, and efficacy of these drugs, aiming to provide a comprehensive review to the involved stakeholders.


Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 324 ◽  
Author(s):  
Shayma Thyab Gddoa Al-sahlany ◽  
Ammar Altemimi ◽  
Alaa Al-Manhel ◽  
Alaa Niamah ◽  
Naoufal Lakhssassi ◽  
...  

A variety of organisms produce bioactive peptides that express inhibition activity against other organisms. Saccharomyces cerevisiae is considered the best example of a unicellular organism that is useful for studying peptide production. In this study, an antibacterial peptide was produced and isolated from Saccharomyces cerevisiae (Baker’s yeast) by an ultrafiltration process (two membranes with cut-offs of 2 and 10 kDa) and purified using the ÄKTA Pure 25 system. Antibacterial peptide activity was characterized and examined against four bacterial strains including Gram-positive and Gram-negative bacteria. The optimum condition for yeast growth and antibacterial peptide production against both Escherichia. coli and Klebsiella aerogenes was 25–30 °C within a 48 h period. The isolated peptide had a molecular weight of 9770 Da, was thermostable at 50–90 °C for 30 min, and tolerated a pH range of 5–7 at 4 °C and 25 °C during the first 24 h, making this isolated antibacterial peptides suitable for use in sterilization and thermal processes, which are very important aspect in food production. The isolated antibacterial peptide caused a rapid and steady decline in the number of viable cells from 2 to 2.3 log units of gram-negative strains and from 1.5 to 1.8 log units of gram-positive strains during 24 h of incubation. The isolated antibacterial peptide from Saccharomyces cerevisiae may present a potential biopreservative compound in the food industry exhibiting inhibition activity against gram-negative and gram-positive bacteria.


Sign in / Sign up

Export Citation Format

Share Document