scholarly journals Optimization of extracellular ethanol-tolerant β-glucosidase production from a newly isolated Aspergillus sp. DHE7 via solid state fermentation using jojoba meal as substrate: purification and biochemical characterization for biofuel preparation

Author(s):  
Dina H. El-Ghonemy

Abstract Background The increasing demand and the continuous depletion in fossil fuels have persuaded researchers to investigate new sources of renewable energy. Bioethanol produced from cellulose could be a cost-effective and a viable alternative to petroleum. It is worth note that β-glucosidase plays a key role in the hydrolysis of cellulose and therefore in the production of bioethanol. This study aims to investigate a simple and standardized method for maximization of extracellular β-glucosidase production from a novel fungal isolate under solid-state fermentation using agro-industrial residues as the sole source of carbon and nitrogen. Furthermore, purification and characterization of β-glucosidase were performed to determine the conditions under which the enzyme displayed the highest performance. Results A fungus identified genetically as a new Aspergillus sp. DHE7 was found to exhibit the highest extracellular β-glucosidase production among the sixty fungal isolates tested. Optimization of culture conditions improved the enzyme biosynthesis by 2.1-fold (174.6 ± 5.8 U/g of dry substrate) when the fungus grown for 72 h at 35 °C on jojoba meal with 60% of initial substrate moisture, pH 6.0, and an inoculum size of 2.54 × 107 spores/mL. The enzyme was purified to homogeneity through a multi-step purification process. The purified β-glucosidase is monomeric with a molecular mass of 135 kDa as revealed by the SDS-PAGE analysis. Optimum activity was observed at 60 °C and pH of 6.0, with a remarkable pH and thermal stability. The enzyme retained about 79% and 53% of its activity, after 1 h at 70 °C and 80 °C, respectively. The purified β-glucosidase hydrolysed a wide range of substrates but displaying its greater activity on p-nitrophenyl-β-D-glucopyranoside and cellobiose. The values of Km and Vmax on p-nitrophenyl β-D-glucopyranoside were 0.4 mM and 232.6 U/mL, respectively. Purified β-glucosidase displayed high catalytic activity (improved by 25%) in solutions contained ethanol up to 15%. Conclusion β-glucosidase characteristics associated with its ability to hydrolyse cellobiose, underscore its utilization in improving the quality of food and beverages. In addition, taking into consideration that the final concentration of ethanol produced by the conventional methods is about 10%, suggests its use in ethanol-containing industrial processes and in the saccharification processes for bioethanol production. Graphical abstract

Author(s):  
Shradhdha Sharma ◽  
Duggirala Srinivas Murty

Nowadays, a lot of interest has been given to the development of cost-effective and efficient enzyme production technologies. Laccase enzymes are widely used in biotechnological, environmental and industrial sectors. Due to the cost-effectiveness of the solid-state fermentation (SSF) process, it is widely used to produce a broad range of biological products. In this study, optimization of moisture content, temperature, pH, and inoculum size were studied to enhance laccase production ability of Pleurotus sajor-caju in SSF by using One Factor At Time (OFAT) and Response Surface Methodology (RSM). OFAT was used as a baseline study for deducing the experimental design of RSM. The highest production of laccase enzyme (1450 U/g) by Pleurotus sajor-caju on wheat straw was observed at 26°C, 6.0 pH, 72.5 % moisture content, 7.5% inoculum size, 1% fructose and 0.5 % peptone. Unlike the conventional inoculum preparation method, here the inoculum was generated by the spawning method for SSF. The molecular weight of partially purified laccase from Pleurotus sajor-caju was estimated to be around 62 K Da using SDS PAGE. The activity staining of laccase was observed as a zymogram on Native PAGE using ABTS as a substrate. Lignin degradation of wheat straw and its structural disruption due to laccase was observed by Scanning Electron Microscopy (SEM).


2020 ◽  
Vol 21 (3) ◽  
pp. 211-220 ◽  
Author(s):  
Chandrasai Potla Durthi ◽  
Madhuri Pola ◽  
Satish Babu Rajulapati ◽  
Anand Kishore Kola

Aim & objective: To review the applications and production studies of reported antileukemic drug L-glutaminase under Solid-state Fermentation (SSF). Overview: An amidohydrolase that gained economic importance because of its wide range of applications in the pharmaceutical industry, as well as the food industry, is L-glutaminase. The medical applications utilized it as an anti-tumor agent as well as an antiretroviral agent. L-glutaminase is employed in the food industry as an acrylamide degradation agent, as a flavor enhancer and for the synthesis of theanine. Another application includes its use in hybridoma technology as a biosensing agent. Because of its diverse applications, scientists are now focusing on enhancing the production and optimization of L-glutaminase from various sources by both Solid-state Fermentation (SSF) and submerged fermentation studies. Of both types of fermentation processes, SSF has gained importance because of its minimal cost and energy requirement. L-glutaminase can be produced by SSF from both bacteria and fungi. Single-factor studies, as well as multi-level optimization studies, were employed to enhance L-glutaminase production. It was concluded that L-glutaminase activity achieved by SSF was 1690 U/g using wheat bran and Bengal gram husk by applying feed-forward artificial neural network and genetic algorithm. The highest L-glutaminase activity achieved under SSF was 3300 U/gds from Bacillus sp., by mixture design. Purification and kinetics studies were also reported to find the molecular weight as well as the stability of L-glutaminase. Conclusion: The current review is focused on the production of L-glutaminase by SSF from both bacteria and fungi. It was concluded from reported literature that optimization studies enhanced L-glutaminase production. Researchers have also confirmed antileukemic and anti-tumor properties of the purified L-glutaminase on various cell lines.


2014 ◽  
Vol 81 (5) ◽  
pp. 1799-1812 ◽  
Author(s):  
Agnès Groisillier ◽  
Aurore Labourel ◽  
Gurvan Michel ◽  
Thierry Tonon

ABSTRACTMannitol is a polyol that occurs in a wide range of living organisms, where it fulfills different physiological roles. In particular, mannitol can account for as much as 20 to 30% of the dry weight of brown algae and is likely to be an important source of carbon for marine heterotrophic bacteria.Zobellia galactanivorans(Flavobacteriia) is a model for the study of pathways involved in the degradation of seaweed carbohydrates. Annotation of its genome revealed the presence of genes potentially involved in mannitol catabolism, and we describe here the biochemical characterization of a recombinant mannitol-2-dehydrogenase (M2DH) and a fructokinase (FK). Among the observations, the M2DH ofZ. galactanivoranswas active as a monomer, did not require metal ions for catalysis, and featured a narrow substrate specificity. The FK characterized was active on fructose and mannose in the presence of a monocation, preferentially K+. Furthermore, the genes coding for these two proteins were adjacent in the genome and were located directly downstream of three loci likely to encode an ATP binding cassette (ABC) transporter complex, suggesting organization into an operon. Gene expression analysis supported this hypothesis and showed the induction of these five genes after culture ofZ. galactanivoransin the presence of mannitol as the sole source of carbon. This operon for mannitol catabolism was identified in only 6 genomes ofFlavobacteriaceaeamong the 76 publicly available at the time of the analysis. It is not conserved in allBacteroidetes; some species contain a predicted mannitol permease instead of a putative ABC transporter complex upstream of M2DH and FK ortholog genes.


2016 ◽  
Vol 40 (1) ◽  
pp. 116-124 ◽  
Author(s):  
Sahar Ghazi Imran

        The present study aimed at producing the ligninolytic enzymes extracts by growing single and co-cultures of an indigenous Aspergillus terreus SG-777 utilizing solid state fermentation (SSF) using lignocellulosic substrates. A further goal was to optimize the production condition of ligninolytic enzymes by selected fungal culture and lignocellulosic substrate. The production process was further improved by optimizing a number of physical parameters such as (substrate, incubation time, moisture level, inoculum size, pH, and temperature). By optimization of different parameters, the maximum specific activities of enzymes synthesized by Aspergillus terreus SG-777 were observed as 0.83 U/mg for manganese peroxidase (MnP), 18.03 U/mg for lignin peroxidase (LiP) and 0.91 U/mg for laccase,  when using the banana stalks as substrate after 8 days incubation at рH 5.5 and 35°C temperature with 1×105 spore/ml ml inoculum size, 1:5 w/v moisture content, 20:1 C:N ratio (glucose and ammonium tartarate as carbon and nitrogen supplements), 1ml of 1mM MnSO4 as mediator, and 1ml of 1mM MgSO4.7H2O2.


2020 ◽  
Vol 2 (4) ◽  
pp. 13-23
Author(s):  
Nabiha Naeem Sheikhs ◽  
Qurat-ul-ain ◽  
Saba Altaf

Proteases (also known as peptidases or proteinases) are hydrolytic enzymes that cleave proteins into amino acids. They comprise 60% of the total industrial usage of enzymes worldwide and can be obtained from many sources. The current study aims to isolate and screen protease-producing bacterial strains from the soil and to produce protease from the bacterial co-cultures using solid-state fermentation (SSF). Primary screening of the protease-producing bacterial strains was carried out on skim milk agar and they were sub-cultured and preserved on the nutrient agar for further testing. Thirty-two compatibility tests of twenty-seven bacterial isolates were performed and SSF was carried out. Afterward, absorbance was taken at 660 nm against tyrosine as standard. According to the results, the bacterial co-culture 19 showed the highest absorbance with an enzyme activity of 10.2 U/ml. The bacterial strains of the co-culture 19 were identified through morphological and biochemical tests. Bacterial strain 1 was observed as cocci and irregular, while bacterial strain 2 was bacillus and rod-shaped. Both strains were positive for gram staining, catalase test, casein hydrolysis test and methyl red test. As for endospore staining, bacterial strain 1 was spore forming while bacterial strain 2 was a non-spore former. It was concluded that the bacterial co-culture 19 can act as a potent co-culture for protease production. Compatibility test was carried out to enhance the production of protease by utilizing cheap and readily available agro-waste products, which benefit the industry by being cost effective and the environment by being eco-friendly.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6301
Author(s):  
Hongshen Li ◽  
Hongrui Liu ◽  
Shizhong Li

To fulfill the consumption demand of low-cost fuel ethanol, an advanced process for feedstock fermentation and bioethanol extraction was required. This study proposed a process of combined continuous solid-state distillation and vapor permeation to extract ethanol from fermented sweet sorghum bagasse on the basis of advanced solid-state fermentation technology. Ethanol undergoes only one phase transition separation in the whole process, which drastically reduces energy consumption compared to the repeating phase transitions that occur in conventional bioethanol production. The mass balance and energy consumption of combining processes were simulated overall. A techno-economic evaluation was conducted on the flowsheet. Costs and profit of fuel ethanol produced by one phase transition separation bioethanol-producing technology were comprehensively calculated. The results of the present study show that the proposed process is an energy efficient and cost-effective alternative to conventional bioethanol production.


2021 ◽  
Vol 34 (1) ◽  
pp. 25-34
Author(s):  
S.J. De Silva ◽  
Udara S.P.R. Arachchige ◽  
A.H.L.R. Nilmini

The present world highly depends on petroleum fuels to gain energy for transportation resulting in the vast side of environmental problems such as global warming and air pollution. Due to this, the price of conventional fuel escalating day by day. Accordingly, the world needs renewable, ecologically suitable, cost-effective alternate against fossil fuels. Bioethanol is one of the most usable fuel or fuel additives among the other biofuels. Ingoing qualities of bioethanol such as high-octane number, high oxygen content, and low energy content are revealed that application of bioethanol produced from different types of waste materials feedstock in the transportation and energy sector diminishes environment pollution. It provides a solution for waste management. The world releases a considerable amount of fruits as waste annually. Thereby, fruit waste is the cheapest feedstock to produce bioethanol. Fruit waste such as whole rotten fruits, fruit peels, seeds and other residues consists of cellulose, hemicellulose, lignin, starch and simple sugars. Conversion of cellulose and hemicellulose to ethanol is vital to advance pretreatment and hydrolysis techniques to obtain maximum ethanol content. The production process of bioethanol from fruit waste mainly contains pretreatment; hydrolysis, saccharification, fermentation and ethanol extracting process (distillation) steps. Yeast (S. cerevisiae) is primarily used in the fermentation process because of its high conversion efficiency, cost-effectiveness and feasibility of handling. Considering the optimum configuration for bioethanol production, simultaneous saccharification and fermentation (SSF) is the best commensurate method having maximum bioethanol concentration. The fermentation process could be appreciated through various factors, such as temperature (30-33 ºC), pH of the medium (4-5), time of incubation, feedstock concentration, inoculum size, agitating rate, N sources in the medium to gain high bioethanol concentration.


2021 ◽  
Vol 30 (1) ◽  
pp. 257-275
Author(s):  
Nazaitulshila Rasit ◽  
Yong Sin Sze ◽  
Mohd Ali Hassan ◽  
Ooi Chee Kuan ◽  
Sofiah Hamzah ◽  
...  

In this study, the biomass of banana peel was used to produce pectinase via optimization of solid-state fermentation conditions of the filamentous fungi Aspergillus nigeA. niger). The operating conditions of solid-state fermentation were optimized using the method of full factorial design with incubation temperature ranging between 25 °C and 35 °C, moisture content between 40% and 60%, and inoculum size between 1.6 x 106 spores/mL and 1.4 x 107 spores/mL. Optimizing the solid-state fermentation conditions appeared crucial to minimize the sample used in this experimental design and determine the significant correlation between the operating conditions. A relatively high maximal pectinase production of 27 UmL-1 was attained at 35° C of incubation, 60% of moisture content, and 1.6 x 106 spores/mL of inoculum size with a relatively low amount of substrate (5 g). Given that the production of pectinase with other substrates (e.g., pineapple waste, lemon peel, cassava waste, and wheat bran) generally ranges between 3 U/mL and 16 U/mL (Abdullah et al., 2018; Handa et al., 2016; Melnichuk et al., 2020; Thangaratham and Manimegalai, 2014; Salim et al., 2017), thus the yield of pectinase derived from the banana peel in this study (27 U/mL) was considered moderately high. The findings of this study indicated that the biomass of banana peel would be a potential substrate for pectinase production via the solid-state fermentation of A. niger.


Sign in / Sign up

Export Citation Format

Share Document