CONTINUATION OF ELECTROMAGNETIC FIELDS—II

Geophysics ◽  
1969 ◽  
Vol 34 (4) ◽  
pp. 572-583 ◽  
Author(s):  
Amalendu Roy

Given the values observed on a plane parallel to a horizontal ground surface, solutions are obtained for the continuation of dynamic electromagnetic fields upward in air or downward into a conducting earth. The upward (away from secondary sources) continuation integrals for the real and imaginary parts of any electromagnetic field component with arbitrary frequency and in a medium with arbitrary electrical and magnetic constants are derived and simplified to the case where the conductivity is zero. However, for frequencies normally used in electromagnetic prospecting, the effect of displacement current is negligible and one does not need to use the rigorous formulas derived, because adequate accuracy can be obtained by using the simpler static field formulas for continuation in a nonconducting medium such as air. The central problem in electromagnetic continuation is one of extrapolating the observed field from one medium to another through a physical boundary, namely, the air‐earth interface. From the magnetic field observed in air, one should be able to compute the same within the conducting earth. Conversely, from the electric field observed within the ground or on its surface, one should be in a position to calculate the same in air and also, of course, deeper into the ground. The continuity conditions for the vertical derivatives of the electromagnetic field components, which constitute the basis for continuing an electromagnetic field from one medium to another, are derived. Downward continuation formulas, suitable for practical use, are derived explicitly, through use of a Taylor expansion, for the vertical component of the magnetic field in air, this being the quantity which is commonly measured. Three‐dimensional downward continuation formulations to depths of one and two units of grid spacing and two‐dimensional continuation to a depth of one unit of grid spacing are derived under the assumption that the effect of displacement current can be neglected.

2019 ◽  
Vol 953 ◽  
pp. 127-132
Author(s):  
Yu Ling Chen ◽  
Du Yan Geng ◽  
Chuan Fang Chen

In this paper, the effects of the quantum yield of free radicals in cryptochrome exposed to different electromagnetic fields were studied through the quantum biology. The results showed that the spikes characteristics was produced in the free radicals in cryptochrome, when it exposed to the applied magnetic field (ω = 50 Hz, B0 = 50 μT). The spikes produced by the electromagnetic field was independent of the changes of polar θ. When the frequency of the magnetic field increased, the spikes characteristics produced in unit time also increased. These results showed that the environmental electromagnetic field could affect the response of organisms to the geomagnetic field by influencing the quantum yield in the mechanism of free radical pair.It provided a basis for studying the influence of environmental electromagnetic field on biology, especially the navigation of biological magnetism.


2016 ◽  
Vol 13 (2) ◽  
pp. 120-123 ◽  
Author(s):  
Jacob Azoulay

Purpose This paper aims to study the properties of cyclically treated pure water in magnetic fields and its comparison with pure untreated water. Design/methodology/approach The magnetic treatment was carried out using a static permanent magnetic field and alternating electromagnetic field. We have measured the magnetic effect on the rising level of the water in capillary tubes and the relaxation time for restoration after removing the magnetic field. The dependence on the magnetic field intensity and on the cyclical time treatments was investigated and discussed. The results of magnetization by static field and electromagnetic field were compared and discussed. It is well known that the clustering structure of hydrogen-bonded chains and polarization effects of water molecules are enhanced after magnetization. Therefore, each experimental series was followed by a “memory” test, the results of which enabled us to have some insights into the molecular and hydrogen bonds of water. Findings It was found that water remembers and keeps the impact of its passing through a magnetic field for several hours and also that many mechanical features were changed under cyclical treatment of a magnetic field.


2021 ◽  
Vol 3 (5) ◽  
pp. 7-10
Author(s):  
Sergey A. Gerasimov

The linear momentum density carried by electromagnetic fields creates the hidden force acting on the displacement current between ends of an unclosed conductor with alternative electric current. This force compensates the self-force exerted by the unclosed conductor with zero thin. The magnetic field produced by displacement current does not contribute to the force acting on the conductor. The unclosed conductor can move under action of the self-force. At small heights of cylindrical open conductor, the reactive force equivalent to the self-force becomes very large


Author(s):  
Jongho Choi ◽  
Hyunchul Choi ◽  
Semi Jeong ◽  
Bang Ju Park ◽  
Seong Young Ko ◽  
...  

Recently, the locomotion of a microrobot wirelessly actuated by electromagnetic actuation systems has been studied in many ways. Because of the inherent characteristics of an electromagnetic field, however, the magnetic field of each coil in the electromagnetic actuation system induces magnetic field interferences, which can distort the desired electromagnetic field, preventing the microrobot from following the desired path. In this article, we used two pairs of Helmholtz coils and two pairs of Maxwell coils in a two-dimensional electromagnetic actuation system. Generally, the two pairs of Helmholtz coils generate the torque for the rotation of the microrobot and the two pairs of Maxwell coils generate the propulsion force of the microrobot. Both pairs of Helmholtz and Maxwell coils have to work to simultaneously align and propel the microrobot in a desired direction. In this situation, however, the electromagnetic fields produced by the Helmholtz coils can interfere with those produced by the Maxwell coils. This interference is closely dependent on the position of the microrobot in the region of interest inside the electromagnetic coils system. This means that the alignment direction and propulsion force of the microrobot can be distorted according to the position of the microrobot. Therefore, we propose a compensation algorithm for the electromagnetic field interference using the position information of the microrobot to correct the magnetic field interferences. First, the interference of an electromagnetic field obeying the Biot–Savart law is analyzed by numerical analysis. Second, a position-based compensation algorithm for the locomotion of a microrobot is proposed. Various locomotion tests of a microrobot verified that the proposed compensation algorithm could reduce the normalized average tracking error from 5.25% to 1.92%.


2019 ◽  
Vol 50 (3) ◽  
pp. 333-345 ◽  
Author(s):  
Danmei Sun ◽  
Meixuan Chen ◽  
Symon Podilchak ◽  
Apostolos Georgiadis ◽  
Qassim S Abdullahi ◽  
...  

Smart and interactive textiles have been attracted great attention in recent years. This research explored three different techniques and processes in developing textile-based conductive coils that are able to embed in a garment layer. Coils made through embroidery and screen printing have good dimensional stability, although the resistance of screen printed coil is too high due to the low conductivity of the print ink. Laser cut coil provided the best electrical conductivity; however, the disadvantage of this method is that it is very difficult to keep the completed coil to the predetermined shape and dimension. The tested results show that an electromagnetic field has been generated between the textile-based conductive coil and an external coil that is directly powered by electricity. The magnetic field and electric field worked simultaneously to complete the wireless charging process.


2021 ◽  
pp. 29-33
Author(s):  

Variants of weld pools obtained by verification with the influence of magnetic fields are considered. Methods for increasing the effectiveness of electromagnetic effects during welding are proposed. Keywords: welding, electromagnetic field, weld pool, induction, coating. [email protected], [email protected]


2018 ◽  
Vol 620 ◽  
pp. A191 ◽  
Author(s):  
M. Benko ◽  
S. J. González Manrique ◽  
H. Balthasar ◽  
P. Gömöry ◽  
C. Kuckein ◽  
...  

Context. It has been empirically determined that the umbra-penumbra boundaries of stable sunspots are characterized by a constant value of the vertical magnetic field. Aims. We analyzed the evolution of the photospheric magnetic field properties of a decaying sunspot belonging to NOAA 11277 between August 28–September 3, 2011. The observations were acquired with the spectropolarimeter on-board of the Hinode satellite. We aim to prove the validity of the constant vertical magnetic-field boundary between the umbra and penumbra in decaying sunspots. Methods. A spectral-line inversion technique was used to infer the magnetic field vector from the full-Stokes profiles. In total, eight maps were inverted and the variation of the magnetic properties in time were quantified using linear or quadratic fits. Results. We find a linear decay of the umbral vertical magnetic field, magnetic flux, and area. The penumbra showed a linear increase of the vertical magnetic field and a sharp decay of the magnetic flux. In addition, the penumbral area quadratically decayed. The vertical component of the magnetic field is weaker on the umbra-penumbra boundary of the studied decaying sunspot compared to stable sunspots. Its value seem to be steadily decreasing during the decay phase. Moreover, at any time of the sunspot decay shown, the inner penumbra boundary does not match with a constant value of the vertical magnetic field, contrary to what is seen in stable sunspots. Conclusions. During the decaying phase of the studied sunspot, the umbra does not have a sufficiently strong vertical component of the magnetic field and is thus unstable and prone to be disintegrated by convection or magnetic diffusion. No constant value of the vertical magnetic field is found for the inner penumbral boundary.


1968 ◽  
Vol 72 (689) ◽  
pp. 437
Author(s):  
B. G. Newman

The Biot-Savart law gives the velocity associated with an elemental portion of line vortex, or the magnetic field associated with an elemental portion of line current. The following proof may appeal to students who approach fluid mechanics or electromagnetic-field theory from the engineering viewpoint. It will be stated in terms of fluid mechanics. Consider a very small length δs of line vortex of circulation strength Γ. At P(x) the velocity δV associated with this portion depends on Γ δs and x.


1997 ◽  
Vol 11 (12) ◽  
pp. 531-540
Author(s):  
V. Onoochin

An experiment within the framework of classical electrodynamics is proposed, to demonstrate Boyer's suggestion of a change in the velocity of a charged particle as it passes close to a solenoid. The moving charge is replaced by an ultra-short pulse (USP), whose characteristics should depend on the current in the coil. This dependence results from the exchange of energy between the electromagnetic field of the pulse and the magnetic field within the solenoid. This energy exchange could only be explained, by assuming that the vector potential of the solenoid has a direct influence on the pulse.


Sign in / Sign up

Export Citation Format

Share Document