The target genes research for diagnosis, therapy and prognosis in cases with ovarian cancer

2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 16060-16060
Author(s):  
E. V. Bakhidze ◽  
A. V. Malek ◽  
A. V. Belyaeva

16060 Background: Epithelial ovarian cancer has one of the worst prognoses among gynecologic malignancies. Molecular genetic analyses of ovarian cancers have uncovered genetic alterations of several genes. Normal tissues were readily distinguished from tumor tissues. These studies identified several genes, such as High mobility group A2 (HMG A2) proteins. The expression of HMG A2 gene is detected in foetal stage of human development and stopped in normal adult tissues. Elevation of the HMG A2 gene expression was shown for several human malignant tumours. Targeted supression of HMG A2 protein synthesis can be one of important directions for anti-tumour therapy in cases of ovarian cancer Methods: The HMG A2 gene expression was searched in 48 flash-frozen samples of ovarian serous papillary adenocarcinoma and 12 samples of normal ovarian tissue. The HMG A2 gene expression was investigated by RNA in situ hybridisation. Results: High and middle level of HMG A2 gene expression was shown in 37 from 48 (77%) ovarian cancer samples. HMG A2 mRNA was not detected in normal ovarian surface epithelium. Low grade tumour differentiation (G3) was detected in 24 cases from 37 (64,9%), middle differentiation (G2) was detected in 12 cases (32,4%) and high grade differentiation (G1) was detected in 1 case (2,7%). Conclusions: HMG A2 high expression is a typical and important feature of serouse type of ovarian carcinoma. High level of HMG A2 gene expression correlate with low grade tumour differentiation. No significant financial relationships to disclose.

2020 ◽  
Author(s):  
Weijia Lu ◽  
Yunyu Wu ◽  
CanXiong Lu ◽  
Ting Zhu ◽  
ZhongLu Ren ◽  
...  

Abstract Objective MicroRNAs (MiRNAs) is considered to play an important role in the occurrence and development of ovarian cancer(OC). Although miRNAs has been widely recognized in ovarian cancer, the role of hsa-miR-30a-5p (miR-30a) in OC has not been fully elucidated. Methods Through the analysis of public data sets in Gene Expression Omnibus (GEO) database and literature review, the significance of miR-30a expression in OC is evaluated. Three mRNA datasets of OC and normal ovarian tissue, GSE14407, GSE18520 and GSE36668, were downloaded from GEO to find the differentially expressed gene (DEG). Then the target genes of hsa-miR-30a-5p were predicted by miRWALK3.0 and TargetScan. Then, the gene overlap between DEG and the predicted target genes of miR-30a in OC was analyzed by Gene Ontology (GO) enrichment analysis. Protein-protein interaction (PPI) network was constructed by STRING and Cytoscape, and the effect of HUB gene on the prognosis of OC was analyzed. Results A common pattern of up-regulation of miR-30a in OC was found. A total of 225 DEG, were identified, both OC-related and miR-30a-related. Many DEG are enriched in the interactions of intracellular matrix tissue, ion binding and biological process regulation. Among the 10 major Hub genes analyzed by PPI, five Hub genes were significantly related to the overall poor survival of OC patients, in which the low expression of ESR1 ,MAPK10, Tp53 and the high expression of YKT ,NSF were related to poor prognosis of OC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ilona E. Grabowicz ◽  
Bartek Wilczyński ◽  
Bożena Kamińska ◽  
Adria-Jaume Roura ◽  
Bartosz Wojtaś ◽  
...  

AbstractGenome-wide studies have uncovered specific genetic alterations, transcriptomic patterns and epigenetic profiles associated with different glioma types. We have recently created a unique atlas encompassing genome-wide profiles of open chromatin, histone H3K27ac and H3Kme3 modifications, DNA methylation and transcriptomes of 33 glioma samples of different grades. Here, we intersected genome-wide atlas data with topologically associating domains (TADs) and demonstrated that the chromatin organization and epigenetic landscape of enhancers have a strong impact on genes differentially expressed in WHO low grade versus high grade gliomas. We identified TADs enriched in glioma grade-specific genes and/or epigenetic marks. We found the set of transcription factors, including REST, E2F1 and NFKB1, that are most likely to regulate gene expression in multiple TADs, containing specific glioma-related genes. Moreover, many genes associated with the cell–matrix adhesion Gene Ontology group, in particular 14 PROTOCADHERINs, were found to be regulated by long-range contacts with enhancers. Presented results demonstrate the existence of epigenetic differences associated with chromatin organization driving differential gene expression in gliomas of different malignancy.


2020 ◽  
Vol 102 (5) ◽  
pp. 1055-1064 ◽  
Author(s):  
Mingxin Shi ◽  
Allison E Whorton ◽  
Nikola Sekulovski ◽  
Marilène Paquet ◽  
James A MacLean ◽  
...  

Abstract Ovarian cancer (OvCa) remains the most common cause of death from gynecological malignancies. Genetically engineered mouse models have been used to study initiation, origin, progression, and/or mechanisms of OvCa. Based on the clinical features of OvCa, we examined a quadruple combination of pathway perturbations including PTEN, TRP53, RB1, and/or CDH1. To characterize the cancer-promoting events in the ovarian surface epithelium (OSE), Amhr2cre/+ mice were used to ablate floxed alleles of Pten, Trp53, and Cdh1, which were crossed with TgK19GT121 mice to inactivate RB1 in KRT19-expressing cells. Inactivation of PTEN, TRP53, and RB1 with or without CDH1 led to the development of type I low-grade OvCa with enlarged serous papillary carcinomas and some high-grade serous carcinomas (HGSCs) in older mice. Initiation of epithelial hyperplasia and micropapillary carcinoma started earlier at 1 month in the triple mutations of Trp53, Pten, and Rb1 mice as compared to 2 months in quadruple mutations of Trp53, Pten, Rb1, and Cdh1 mice, whereas both genotypes eventually developed enlarged proliferating tumors that invaded into the ovary at 3–4 months. Mice with triple and quadruple mutations developed HGSC and/or metastatic tumors, which disseminated into the peritoneal cavity at 4–6 months. In summary, inactivation of PTEN, TRP53, and RB1 initiates OvCa from the OSE. Additional ablation of CDH1 further increased persistence of tumor dissemination and ascites fluid accumulation enhancing peritoneal metastasis.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Ming-Jun Shi ◽  
Xiang-Yu Meng ◽  
Jacqueline Fontugne ◽  
Chun-Long Chen ◽  
François Radvanyi ◽  
...  

Abstract Background APOBEC-driven mutagenesis and functional positive selection of mutated genes may synergistically drive the higher frequency of some hotspot driver mutations compared to other mutations within the same gene, as we reported for FGFR3 S249C. Only a few APOBEC-associated driver hotspot mutations have been identified in bladder cancer (BCa). Here, we systematically looked for and characterised APOBEC-associated hotspots in BCa. Methods We analysed 602 published exome-sequenced BCas, for part of which gene expression data were also available. APOBEC-associated hotspots were identified by motif-mapping, mutation signature fitting and APOBEC-mediated mutagenesis comparison. Joint analysis of DNA hairpin stability and gene expression was performed to predict driver or passenger hotspots. Aryl hydrocarbon receptor (AhR) activity was calculated based on its target genes expression. Effects of AhR knockout/inhibition on BCa cell viability were analysed. Results We established a panel of 44 APOBEC-associated hotspot mutations in BCa, which accounted for about half of the hotspot mutations. Fourteen of them overlapped with the hotspots found in other cancer types with high APOBEC activity. They mostly occurred in the DNA lagging-strand templates and the loop of DNA hairpins. APOBEC-associated hotspots presented systematically a higher prevalence than the other mutations within each APOBEC-target gene, independently of their functional impact. A combined analysis of DNA loop stability and gene expression allowed to distinguish known passenger from known driver hotspot mutations in BCa, including loss-of-function mutations affecting tumour suppressor genes, and to predict new candidate drivers, such as AHR Q383H. We further characterised AHR Q383H as an activating driver mutation associated with high AhR activity in luminal tumours. High AhR activity was also found in tumours presenting amplifications of AHR and its co-receptor ARNT. We finally showed that BCa cells presenting those different genetic alterations were sensitive to AhR inhibition. Conclusions Our study identified novel potential drivers within APOBEC-associated hotspot mutations in BCa reinforcing the importance of APOBEC mutagenesis in BCa. It could allow a better understanding of BCa biology and aetiology and have clinical implications such as AhR as a potential therapeutic target. Our results also challenge the dogma that all hotspot mutations are drivers and mostly gain-of-function mutations affecting oncogenes.


Endocrinology ◽  
2012 ◽  
Vol 153 (4) ◽  
pp. 1638-1648 ◽  
Author(s):  
Lisa K. Mullany ◽  
Zhilin Liu ◽  
Erin R. King ◽  
Kwong-Kwok Wong ◽  
JoAnne S. Richards

Loss of Pten in the KrasG12D;Amhr2-Cre mutant mice leads to the transformation of ovarian surface epithelial (OSE) cells and rapid development of low-grade, invasive serous adenocarcinomas. Tumors occur with 100% penetrance and express elevated levels of wild-type tumor repressor protein 53 (TRP53). To test the functions of TRP53 in the Pten;Kras (Trp53+) mice, we disrupted the Trp53 gene yielding Pten;Kras(Trp53−) mice. By comparing morphology and gene expression profiles in the Trp53+ and Trp53− OSE cells from these mice, we document that wild-type TRP53 acts as a major promoter of OSE cell survival and differentiation: cells lacking Trp53 are transformed yet are less adherent, migratory, and invasive and exhibit a gene expression profile more like normal OSE cells. These results provide a new paradigm: wild-type TRP53 does not preferentially induce apoptotic or senescent related genes in the Pten;Kras(Trp53+) cancer cells but rather increases genes regulating DNA repair, cell cycle progression, and proliferation and decreases putative tumor suppressor genes. However, if TRP53 activity is forced higher by exposure to nutlin-3a (a mouse double minute-2 antagonist), TRP53 suppresses DNA repair genes and induces the expression of genes that control cell cycle arrest and apoptosis. Thus, in the Pten;Kras(Trp53+) mutant mouse OSE cells and likely in human TP53+ low-grade ovarian cancer cells, wild-type TRP53 controls global molecular changes that are dependent on its activation status. These results suggest that activation of TP53 may provide a promising new therapy for managing low-grade ovarian cancer and other cancers in humans in which wild-type TP53 is expressed.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi107-vi108
Author(s):  
Stephanie Hilz ◽  
Chibo Hong ◽  
Llewellyn Jalbert ◽  
Tali Mazor ◽  
Michael Martin ◽  
...  

Abstract BACKGROUND Previous studies of solid tumors have been restricted in their ability to map how heterogeneous cell populations evolved within the tumor in three-dimensional (3D) space due to insufficient sampling, typically one sample per tumor, and a lack of knowledge of where within the tumor the sample was obtained. Knowledge of the extensivity of heterogeneity and how it is spatially distributed is crucial for assessing whether a therapeutic target is truly tumor-wide, and for exploring how mutations relate to heterogeneity in the local microenvironment. METHODS We developed a novel platform to integrate and visualize in 3D multi-omics data generated from each of 8–10 spatially mapped samples per tumor. Together, the 171 samples collected using this approach from 16 adult diffuse glioma at diagnosis and recurrence form a novel resource – the 3D Glioma Atlas. RESULTS By maximally sampling the tumor geography without excluding samples based on low cancer cell fraction (CCF), we identify a subpopulation of glioblastoma with pervasively lower CCF likely excluded by other atlases, such as the TCGA, that used stringent CCF cutoffs. Exome sequencing of 3D-mapped samples from lower-grade tumors revealed that clonal expansions are typically spatially segregated, implying minimal tumor-wide intermixing of genetically heterogenous cells. Heterogeneity is less spatially segregated for faster-growing high-grade tumors, suggesting that cell populations expand in these tumors differently. Recurrent low-grade tumors have greater intratumoral mutational heterogeneity than newly diagnosed tumors, though this did not translate into greater dissimilarity in gene expression profiles for recurrent tumors, suggesting minimal functional impact of this additional mutational diversity on gene expression. CONCLUSIONS The delineation of spatial patterns of heterogeneity that our work provides enables more informed interpretation of biopsies and greater insight into the factors shaping intratumoral variation of gene expression patterns. Ongoing work is exploring the spatial patterning of amplification events and the tumor microenvironment.


Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1917 ◽  
Author(s):  
Changwon Yang ◽  
Hee Seung Kim ◽  
Soo Jin Park ◽  
Eun Ji Lee ◽  
Se Ik Kim ◽  
...  

In human epithelial ovarian cancer (EOC), various miRNAs can function as either oncogenes or tumor suppressor genes. We investigated miRNAs known to be involved in EOC progression and analyzed their expression in tissues and serum-derived exosomes from benign serous cystadenoma, borderline serous tumor, low-grade serous ovarian cancer, and high-grade serous ovarian cancer patients (HGSO). The HGSO group was divided based on the platinum-free interval, which is defined as the duration from the completion of platinum-based chemotherapy to recurrence. We also analyzed the mRNA levels of target genes that candidate miRNAs might regulate in patient tissues. miR-214-3p was highly expressed in tissues and exosomes derived from EOC with high malignancy and also found to regulate the expression of LIM homeobox domain 6 (LHX6) mRNA. Serum exosomal levels of miR-214-3p were significantly increased in platinum-resistant HGSO (25.2-fold, p < 0.001) compared to the exosomal expression of benign tumor patients. On transfection of miR-214-3p inhibitor in EOC cells, cell proliferation was inhibited while apoptotic cell death was increased. Collectively, we suggest that miR-214-3p in serum exosomes can be a potential biomarker for the diagnosis and prognosis of ovarian tumor, and its inhibition can be a supportive treatment for EOC.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Emily L. Flam ◽  
Ludmila Danilova ◽  
Dylan Z. Kelley ◽  
Elena Stavrovskaya ◽  
Theresa Guo ◽  
...  

Abstract Current literature suggests that epigenetically regulated super-enhancers (SEs) are drivers of aberrant gene expression in cancers. Many tumor types are still missing chromatin data to define cancer-specific SEs and their role in carcinogenesis. In this work, we develop a simple pipeline, which can utilize chromatin data from etiologically similar tumors to discover tissue-specific SEs and their target genes using gene expression and DNA methylation data. As an example, we applied our pipeline to human papillomavirus-related oropharyngeal squamous cell carcinoma (HPV + OPSCC). This tumor type is characterized by abundant gene expression changes, which cannot be explained by genetic alterations alone. Chromatin data are still limited for this disease, so we used 3627 SE elements from public domain data for closely related tissues, including normal and tumor lung, and cervical cancer cell lines. We integrated the available DNA methylation and gene expression data for HPV + OPSCC samples to filter the candidate SEs to identify functional SEs and their affected targets, which are essential for cancer development. Overall, we found 159 differentially methylated SEs, including 87 SEs that actively regulate expression of 150 nearby genes (211 SE-gene pairs) in HPV + OPSCC. Of these, 132 SE-gene pairs were validated in a related TCGA cohort. Pathway analysis revealed that the SE-regulated genes were associated with pathways known to regulate nasopharyngeal, breast, melanoma, and bladder carcinogenesis and are regulated by the epigenetic landscape in those cancers. Thus, we propose that gene expression in HPV + OPSCC may be controlled by epigenetic alterations in SE elements, which are common between related tissues. Our pipeline can utilize a diversity of data inputs and can be further adapted to SE analysis of diseased and non-diseased tissues from different organisms.


Author(s):  
Laura J Mauro ◽  
Megan I Seibel ◽  
Caroline H Diep ◽  
Angela Spartz ◽  
Carlos Perez Kerkvliet ◽  
...  

Abstract Content The ability of ovarian steroids to modify ovarian cancer (OC) risk remains controversial. Progesterone is considered to be protective; recent studies indicate no effect or enhanced OC risk. Knowledge of progesterone receptor (PR) signaling during altered physiology that typifies OC development is limited. This study defines PR-driven oncogenic signaling mechanisms in p53-mutant human fallopian tube epithelia (hFTE), a precursor of the most aggressive OC subtype. Methods PR expression in clinical samples of serous tubal intraepithelial carcinoma (STIC) lesions and high grade serous OC (HGSC) tumors was analyzed. Novel PR-A and PR-B isoform-expressing hFTE models were characterized for gene expression and cell cycle progression, emboli formation, and invasion. PR regulation of the DREAM quiescence complex and DYRK1 kinases was established. Results STICs and HGSC express abundant activated phospho-PR. Progestin promoted reversible hFTE cell cycle arrest, spheroid formation and invasion. RNAseq/biochemical studies revealed potent ligand-independent/-dependent PR actions, progestin induced regulation of the DREAM quiescence complex and cell-cycle target genes through enhanced complex formation and chromatin recruitment. Disruption of DREAM/DYRK1s by pharmacological inhibition, HPV E6/E7 expression or DYRK1A/B depletion blocked progestin-induced cell arrest and attenuated PR-driven gene expression and associated OC phenotypes. Conclusion Activated PRs support quiescence and pro-survival/pro-dissemination cell behaviors that may contribute to early HGSC progression. Our data support an alternative perspective on the tenant that progesterone always confers protection against OC. STICs can reside undetected for decades prior to invasive disease; our studies reveal clinical opportunities to prevent the ultimate development of HGSC by targeting PRs, DREAM, and/or DYRKs.


2020 ◽  
Author(s):  
Weijia Lu ◽  
Yunyu Wu ◽  
CanXiong Lu ◽  
Ting Zhu ◽  
ZhongLu Ren ◽  
...  

Abstract Objective: MicroRNAs (MiRNAs) is thought to play an critical role in the initiation and progress of ovarian cancer(OC). Although miRNAs has been widely recognized in ovarian cancer, the role of hsa-miR-30a-5p (miR-30a) in OC has not been fully elucidated.Methods:Three mRNA datasets of normal ovarian tissue and OC, GSE18520 ,GSE14407 and GSE36668, were downloaded from Gene Expression Omnibus(GEO) to find the differentially expressed gene (DEG). Then the target genes of hsa-miR-30a-5p were predicted by miRWALK3.0 and TargetScan. Then, the gene overlap between DEG and the predicted target genes of miR-30a in OC was analyzed by Gene Ontology (GO) enrichment analysis. Protein-protein interaction (PPI) network was conducted by STRING and Cytoscape, and the effect of HUB gene on the outcome of OC was analyzed.Results:A common pattern of up-regulation of miR-30a in OC was found. A total of 225 DEG, were identified, both OC-related and miR-30a-related. Many DEG are enriched in the interactions of intracellular matrix tissue, ion binding and biological process regulation. Among the 10 major Hub genes analyzed by PPI, five Hub genes were significantly related to the overall poor survival of OC patients, in which the low expression of ESR1 ,MAPK10, Tp53 and the high expression of YKT ,NSF were related to poor prognosis of OC.Conclusion:Our results indicate that miR-30a is of significance for the biological progress of OC.


Sign in / Sign up

Export Citation Format

Share Document