Sea Anemones

2020 ◽  
pp. 319-337
Author(s):  
Avelin Mary ◽  
R. Sarojini
Keyword(s):  
2020 ◽  
Vol 10 (4) ◽  
pp. 93-97
Author(s):  
Anil Kumar A ◽  
Raja Sheker K ◽  
Naveen B ◽  
Abhilash G ◽  
Akila CR

Seas assets that give us a variety of characteristic items to control bacterial, contagious and viral ailment and mostly utilized for malignancy chemotherapy practically from spineless creatures, for example, bryozoans, wipes, delicate corals, coelenterates, ocean fans, ocean bunnies, molluscs and echinoderms. In the previous 30 - 40 years, marine plants and creatures have been the focal point of overall endeavours to characterize the regular results of the marine condition. Numerous marine characteristic items have been effectively exceptional to the last phases of clinical preliminaries, including dolastatin-10, a group of peptides disengaged from Indian ocean rabbit, Dollabella auricularia. Ecteinascidin-743 from mangrove tunicate Ecteinascidia turbinata, Didemnins was isolated from Caribbean tunicate Trididemnum solidum and Conopeptides from cone snails (Conus sp.), and a developing number of up-and-comers have been chosen as promising leads for expanded pre-clinical appraisals. Sea anemones possess numerous tentacles containing stinging cells or cnidocytes. The stinging cells are equipped with small organelles known as nematocysts. The two species of sea anemones namely, Heteractis magnificaandStichodactyla haddoni, were collected from Mandapam coastal waters of Ramanathapuram district, Tamilnadu, India. The Nematocyst was collected and centrifuged, and the supernatant was lyophilized and stored for further analysis. The amount of protein from Heteractis Magnifica and Stichodactyla haddoni was estimated. The crude extract has shown haemolytic activity on chicken blood and goat blood. In the antibacterial activity of the sea anemone against six bacterial strains Staphylococcus aureus, Salmonella typhii, Salmonella paratyphii, Klebsiella pneumonia, Vibrio cholerae, Pseudomonas aeruginosa. Antibacterial activity of H. Magnifica and S.haddoni was measured as the radius of the zone of inhibition.


2019 ◽  
Vol 18 (30) ◽  
pp. 2555-2566 ◽  
Author(s):  
Bhaswati Chatterjee

The resistance to chemotherapeutics by the cancerous cells has made its treatment more complicated. Animal venoms have emerged as an alternative strategy for anti-cancer therapeutics. Animal venoms are cocktails of complex bioactive chemicals mainly disulfide-rich proteins and peptides with diverse pharmacological actions. The components of venoms are specific, stable, and potent and have the ability to modify their molecular targets thus making them good therapeutics candidates. The isolation of cancer-specific components from animal venoms is one of the exciting strategies in anti-cancer research. This review highlights the identified venom peptides and proteins from different venomous animals like snakes, scorpions, spiders, bees, wasps, snails, toads, frogs and sea anemones and their anticancer activities including inhibition of proliferation of cancer cells, their invasion, cell cycle arrest, induction of apoptosis and the identification of involved signaling pathways.


2019 ◽  
Vol 19 (2) ◽  
pp. 114-118
Author(s):  
Gian Luigi Mariottini ◽  
Irwin Darren Grice

Natural compounds extracted from organisms and microorganisms are an important resource for the development of drugs and bioactive molecules. Many such compounds have made valuable contributions in diverse fields such as human health, pharmaceutics and industrial applications. Presently, however, research on investigating natural compounds from marine organisms is scarce. This is somewhat surprising considering that the marine environment makes a major contribution to Earth's ecosystems and consequently possesses a vast storehouse of diverse marine species. Interestingly, of the marine bioactive natural compounds identified to date, many are venoms, coming from Cnidarians (jellyfish, sea anemones, corals). Cnidarians are therefore particularly interesting marine species, producing important biological compounds that warrant further investigation for their development as possible therapeutic agents. From an experimental aspect, this review aims to emphasize and update the current scientific knowledge reported on selected biological activity (antiinflammatory, antimicrobial, antitumoral, anticoagulant, along with several less studied effects) of Cnidarian venoms/extracts, highlighting potential aspects for ongoing research towards their utilization in human therapeutic approaches.


Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 452
Author(s):  
Lauren M. Ashwood ◽  
Michela L. Mitchell ◽  
Bruno Madio ◽  
David A. Hurwood ◽  
Glenn F. King ◽  
...  

Phylum Cnidaria is an ancient venomous group defined by the presence of cnidae, specialised organelles that serve as venom delivery systems. The distribution of cnidae across the body plan is linked to regionalisation of venom production, with tissue-specific venom composition observed in multiple actiniarian species. In this study, we assess whether morphological variants of tentacles are associated with distinct toxin expression profiles and investigate the functional significance of specialised tentacular structures. Using five sea anemone species, we analysed differential expression of toxin-like transcripts and found that expression levels differ significantly across tentacular structures when substantial morphological variation is present. Therefore, the differential expression of toxin genes is associated with morphological variation of tentacular structures in a tissue-specific manner. Furthermore, the unique toxin profile of spherical tentacular structures in families Aliciidae and Thalassianthidae indicate that vesicles and nematospheres may function to protect branched structures that host a large number of photosynthetic symbionts. Thus, hosting zooxanthellae may account for the tentacle-specific toxin expression profiles observed in the current study. Overall, specialised tentacular structures serve unique ecological roles and, in order to fulfil their functions, they possess distinct venom cocktails.


Author(s):  
Vanessa Abelaira Anjos ◽  
Juliana Zomer Sandrini ◽  
Marta Marques Souza

Zootaxa ◽  
2019 ◽  
Vol 4688 (2) ◽  
pp. 249-263
Author(s):  
DANIEL LAURETTA ◽  
MARIANO I. MARTINEZ

Corallimorpharians are a relative small group of anthozoan cnidarians, also known as jewel sea anemones. They resemble actiniarian sea anemones in lacking a skeleton and being solitary, but resemble scleractinian corals in external and internal morphology, and they are considered to be the sister group of the stony corals. Corynactis carnea (=Sphincteractis sanmatiensis) is a small, common and eye catching species that inhabits the shallow water of northern Patagonia and the Argentinean shelf up to 200 m depth. Corallimorphus rigidus is registered for the first time from the southwestern Atlantic Ocean. It is a rather big and rare species that inhabits only the deep sea. Only two specimens were found at 2934 m depth in Mar del Plata submarine canyon, in an area under the influence of the Malvinas current, which may explain its occurrence. These two species are the only two known jewel sea anemones in the Argentinean sea and are reported and described herein. 


Author(s):  
Michel Praet-Van

This ultrastructural investigation of gametogenesis in a deep-sea anemone of the Bay of Biscay trawled around 2000 m depth, contributes to the knowledge of biology and strategy of reproduction of deep-sea benthos.This sea anemone is dioecious. The sperm appears very similar to those of shallow water sea anemones of the genus, Calliactis. The ultrastructural investigation of oogenesis allows the characteristics of the stages of previtellogenesis and vitellogenesis to be defined. The latter begins with a period of lipogenesis correlated with the formation of a trophonema. Mature oocytes measure up to 180 (im in diameter. Study of spermatogenesis and oogenesis reveals that spawning occurs in April/May. In males, the main area of testicular cysts, full of sperm, reaches maximal development from March to May and, in females, the percentage of mature oocytes decreases from 33% in April to 1% in May.Spawning may be induced by the advent in the deep-sea of the products of the spring phytoplankton bloom. This period of spawning, during the increased deposition of organic matter to the deep-sea floor, may be an advantageous strategy for early development of Paracalliactis.


Sign in / Sign up

Export Citation Format

Share Document