scholarly journals There is Only One Valid Definition of Clearance: Critical Examination of Clearance Concepts Reveals the Potential for Errors in Clinical Drug Dosing Decisions

2021 ◽  
Vol 23 (3) ◽  
Author(s):  
Leslie Z. Benet ◽  
Jasleen K. Sodhi ◽  
George Makrygiorgos ◽  
Ali Mesbah

AbstractDrug dosing decisions in clinical medicine and in introducing a drug to market for the past 60 years are based on the pharmacokinetic/clinical pharmacology concept of clearance. We used chemical reaction engineering models to demonstrate the limitations of presently employed clearance measurements based upon systemic blood concentration in reflecting organ clearance. The belief for the last 49 years that in vivo clearance is independent of the mechanistic model for organ clearance is incorrect. There is only one valid definition of clearance. Defining organ clearance solely on the basis of systemic blood concentrations can lead to drug dosing errors when drug effect sites reside either in an eliminating organ exhibiting incremental clearance or in a non-eliminating organ where intraorgan concentration is governed by transporter actions. Attempts to predict clearance are presently hampered by the lack of recognition that what we are trying to predict is a well-stirred model clearance.

Author(s):  
Н.В. Белобородова ◽  
В.В. Мороз ◽  
А.Ю. Бедова

Интеграция метаболизма макроорганизма и его микробиоты, обеспечивающая в норме симбиоз и саногенез, нарушается при заболеваниях, травме, критическом состоянии, и вектор взаимодействия может изменяться в пользу прокариотов по принципу «метаболиты бактерий - против хозяина». Анализ литературы показал, что, с одной стороны, имеется живой интерес к ароматическим микробным метаболитам, с другой - отсутствует четкое представление об их роли в организме человека. Публикации, касающиеся ряда ароматических микробных метаболитов (фенилкарбоновых кислот, ФКК), как правило, не связаны между собой по тематике и направлены на решение тех или иных прикладных задач в разных областях биологии и медицины. Цель обзора - анализ информации о происхождении, биологических эффектах ФКК в экспериментах in vitro и in vivo , и клинических наблюдениях. Обобщая результаты приведенных в обзоре исследований на клеточном, субклеточном и молекулярном уровнях, логично предположить участие ароматических микробных метаболитов в патогенезе полиорганной недостаточности при сепсисе. Наиболее перспективным для раскрытия роли ароматических микробных метаболитов представляется изучение механизмов вторичной почечной недостаточности и септической энцефалопатии. Важным направлением для будущих исследований является изучение влияния продуктов микробной биодеградации ароматических соединений на развитие диссеминированного внутрисосудистого свертывания крови, артериальной гипотензии и септического шока. Результаты дальнейших исследований будут иметь не только фундаментальное значение, но и обогатят практическую медицину новыми диагностическими и лечебными технологиями. Significant increases in blood concentrations of some aromatic metabolites (phenylcarboxylic acids, PhCAs) in patients with sepsis have been previously shown. Enhanced bacterial biodegradation of aromatic compounds has been demonstrated to considerably contribute to this process. Integration of macroorganism metabolism and its microbiota, which provides normal symbiosis and sanogenesis, is disturbed in diseases, trauma, and critical conditions. Direction of this interaction may change in favor of prokaryotes according to the principle, “bacterial metabolites are against the host”. Analysis of literature showed a particular interest of many investigators to aromatic microbial metabolites. However, there is no clear understanding of their role in the human body. Publications on PhCAs are generally not thematically interrelated and usually focus on solving applied tasks in different fields of biology and medicine. The aim of this work was to consolidate existing information about origin and biological effects of PhCAs in in vitro / in vivo experiments and some clinical findings. The presented summary of reported data from studies performed at cellular, sub-cellular, and molecular levels suggests participation of aromatic microbial metabolites in the pathogenesis of multiple organ failure in sepsis. Studying mechanisms of secondary renal failure and septic encephalopathy is most promising for discovering the function of aromatic microbial metabolites. Effects of microbial biodegradation products of aromatic substances on development of disseminated intravascular coagulation, hypotension, and septic shock are an important challenge for future studies. Results of further investigations will be not only fundamental, but will also enrich medical practice with new diagnostic and therapeutic technologies.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
You Shuai ◽  
Zhonghua Ma ◽  
Weitao Liu ◽  
Tao Yu ◽  
Changsheng Yan ◽  
...  

Abstract Background Gastric cancer (GC) is the third leading cause of cancer-related mortality globally. Long noncoding RNAs (lncRNAs) are dysregulated in obvious malignancies including GC and exploring the regulatory mechanisms underlying their expression is an attractive research area. However, these molecular mechanisms require further clarification, especially upstream mechanisms. Methods LncRNA MNX1-AS1 expression in GC tissue samples was investigated via microarray analysis and further determined in a cohort of GC tissues via quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays. Cell proliferation and flow cytometry assays were performed to confirm the roles of MNX1-AS1 in GC proliferation, cell cycle regulation, and apoptosis. The influence of MNX1-AS1 on GC cell migration and invasion was explored with Transwell assays. A xenograft tumour model was established to verify the effects of MNX1-AS1 on in vivo tumourigenesis. The TEAD4-involved upstream regulatory mechanism of MNX1-AS1 was explored through ChIP and luciferase reporter assays. The mechanistic model of MNX1-AS1 in regulating gene expression was further detected by subcellular fractionation, FISH, RIP, ChIP and luciferase reporter assays. Results It was found that MNX1-AS1 displayed obvious upregulation in GC tissue samples and cell lines, and ectopic expression of MNX1-AS1 predicted poor clinical outcomes for patients with GC. Overexpressed MNX1-AS1 expression promoted proliferation, migration and invasion of GC cells markedly, whereas decreased MNX1-AS1 expression elicited the opposite effects. Consistent with the in vitro results, MNX1-AS1 depletion effectively inhibited the growth of xenograft tumour in vivo. Mechanistically, TEAD4 directly bound the promoter region of MNX1-AS1 and stimulated the transcription of MNX1-AS1. Furthermore, MNX1-AS1 can sponge miR-6785-5p to upregulate the expression of BCL2 in GC cells. Meanwhile, MNX1-AS1 suppressed the transcription of BTG2 by recruiting polycomb repressive complex 2 to BTG2 promoter regions. Conclusions Our findings demonstrate that MNX1-AS1 may be able to serve as a prognostic indicator in GC patients and that TEAD4-activatd MNX1-AS1 can promote GC progression through EZH2/BTG2 and miR-6785-5p/BCL2 axes, implicating it as a novel and potent target for the treatment of GC.


1986 ◽  
Vol 61 (1) ◽  
pp. 185-191 ◽  
Author(s):  
C. A. Hales ◽  
R. D. Brandstetter ◽  
C. F. Neely ◽  
M. B. Peterson ◽  
D. Kong ◽  
...  

Acute pulmonary and systemic vasomotor changes induced by endotoxin in dogs have been related, at least in part, to the production of eicosanoids such as the vasoconstrictor thromboxane and the vasodilator prostacyclin. Steroids in high doses, in vitro, inhibit activation of phospholipase A2 and prevent fatty acid release from cell membranes to enter the arachidonic acid cascade. We, therefore, administered methylprednisolone (40 mg/kg) to dogs to see if eicosanoid production and the ensuing vasomotor changes could be prevented after administration of 150 micrograms/kg of endotoxin. The stable metabolites of thromboxane B2 (TxB2) and 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha) were measured by radioimmunoassay. Methylprednisolone by itself did not alter circulating eicosanoids but when given 2.5 h before endotoxin not only failed to inhibit endotoxin-induced eicosanoid production but actually resulted in higher circulating levels of 6-keto-PGF1 alpha (P less than 0.05) compared with animals receiving endotoxin alone. Indomethacin prevented the steroid-enhanced concentrations of 6-keto-PGF1 alpha after endotoxin and prevented the greater fall (P less than 0.05) in systemic blood pressure and systemic vascular resistance with steroid plus endotoxin than occurred with endotoxin alone. Administration of methylprednisolone immediately before endotoxin resulted in enhanced levels (P less than 0.05) of both TxB2 and 6-keto-PGF1 alpha but with a fall in systemic blood pressure and vascular resistance similar to the animals pretreated by 2.5 h. In contrast to the early steroid group in which all of the hypotensive effect was due to eicosanoids, in the latter group steroids had an additional nonspecific effect. Thus, in vivo, high-dose steroids did not prevent endotoxin-induced increases in eicosanoids but actually increased circulating levels of TxB2 and 6-keto-PGF1 alpha with a physiological effect favoring vasodilation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adriana M. De Mendoza ◽  
Soňa Michlíková ◽  
Johann Berger ◽  
Jens Karschau ◽  
Leoni A. Kunz-Schughart ◽  
...  

AbstractRadiotherapy can effectively kill malignant cells, but the doses required to cure cancer patients may inflict severe collateral damage to adjacent healthy tissues. Recent technological advances in the clinical application has revitalized hyperthermia treatment (HT) as an option to improve radiotherapy (RT) outcomes. Understanding the synergistic effect of simultaneous thermoradiotherapy via mathematical modelling is essential for treatment planning. We here propose a theoretical model in which the thermal enhancement ratio (TER) relates to the cell fraction being radiosensitised by the infliction of sublethal damage through HT. Further damage finally kills the cell or abrogates its proliferative capacity in a non-reversible process. We suggest the TER to be proportional to the energy invested in the sensitisation, which is modelled as a simple rate process. Assuming protein denaturation as the main driver of HT-induced sublethal damage and considering the temperature dependence of the heat capacity of cellular proteins, the sensitisation rates were found to depend exponentially on temperature; in agreement with previous empirical observations. Our findings point towards an improved definition of thermal dose in concordance with the thermodynamics of protein denaturation. Our predictions well reproduce experimental in vitro and in vivo data, explaining the thermal modulation of cellular radioresponse for simultaneous thermoradiotherapy.


Author(s):  
Chiara Treghini ◽  
Alfonso Dell’Accio ◽  
Franco Fusi ◽  
Giovanni Romano

AbstractChronic lung infections are among the most diffused human infections, being often associated with multidrug-resistant bacteria. In this framework, the European project “Light4Lungs” aims at synthesizing and testing an inhalable light source to control lung infections by antimicrobial photoinactivation (aPDI), addressing endogenous photosensitizers only (porphyrins) in the representative case of S. aureus and P. aeruginosa. In the search for the best emission characteristics for the aerosolized light source, this work defines and calculates the photo-killing action spectrum for lung aPDI in the exemplary case of cystic fibrosis. This was obtained by applying a semi-theoretical modelling with Monte Carlo simulations, according to previously published methodology related to stomach infections and applied to the infected trachea, bronchi, bronchioles and alveoli. In each of these regions, the two low and high oxygen concentration cases were considered to account for the variability of in vivo conditions, together with the presence of endogenous porphyrins and other relevant absorbers/diffusers inside the illuminated biofilm/mucous layer. Furthermore, an a priori method to obtain the “best illumination wavelengths” was defined, starting from maximizing porphyrin and light absorption at any depth. The obtained action spectrum is peaked at 394 nm and mostly follows porphyrin extinction coefficient behavior. This is confirmed by the results from the best illumination wavelengths, which reinforces the robustness of our approach. These results can offer important indications for the synthesis of the aerosolized light source and definition of its most effective emission spectrum, suggesting a flexible platform to be considered in further applications.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1556
Author(s):  
Stefania Scialla ◽  
Giorgia Martuscelli ◽  
Francesco Nappi ◽  
Sanjeet Singh Avtaar Singh ◽  
Adelaide Iervolino ◽  
...  

Over the years, there has been an increasing number of cardiac and orthopaedic implanted medical devices, which has caused an increased incidence of device-associated infections. The surfaces of these indwelling devices are preferred sites for the development of biofilms that are potentially lethal for patients. Device-related infections form a large proportion of hospital-acquired infections and have a bearing on both morbidity and mortality. Treatment of these infections is limited to the use of systemic antibiotics with invasive revision surgeries, which had implications on healthcare burdens. The purpose of this review is to describe the main causes that lead to the onset of infection, highlighting both the biological and clinical pathophysiology. Both passive and active surface treatments have been used in the field of biomaterials to reduce the impact of these infections. This includes the use of antimicrobial peptides and ionic liquids in the preventive treatment of antibiotic-resistant biofilms. Thus far, multiple in vivo studies have shown efficacious effects against the antibiotic-resistant biofilm. However, this has yet to materialize in clinical medicine.


Author(s):  
Danlei Wang ◽  
Maartje H. Rietdijk ◽  
Lenny Kamelia ◽  
Peter J. Boogaard ◽  
Ivonne M. C. M. Rietjens

AbstractDevelopmental toxicity testing is an animal-intensive endpoints in toxicity testing and calls for animal-free alternatives. Previous studies showed the applicability of an in vitro–in silico approach for predicting developmental toxicity of a range of compounds, based on data from the mouse embryonic stem cell test (EST) combined with physiologically based kinetic (PBK) modelling facilitated reverse dosimetry. In the current study, the use of this approach for predicting developmental toxicity of polycyclic aromatic hydrocarbons (PAHs) was evaluated, using benzo[a]pyrene (BaP) as a model compound. A rat PBK model of BaP was developed to simulate the kinetics of its main metabolite 3-hydroxybenzo[a]pyrene (3-OHBaP), shown previously to be responsible for the developmental toxicity of BaP. Comparison to in vivo kinetic data showed that the model adequately predicted BaP and 3-OHBaP blood concentrations in the rat. Using this PBK model and reverse dosimetry, a concentration–response curve for 3-OHBaP obtained in the EST was translated into an in vivo dose–response curve for developmental toxicity of BaP in rats upon single or repeated dose exposure. The predicted half maximal effect doses (ED50) amounted to 67 and 45 mg/kg bw being comparable to the ED50 derived from the in vivo dose–response data reported for BaP in the literature, of 29 mg/kg bw. The present study provides a proof of principle of applying this in vitro–in silico approach for evaluating developmental toxicity of BaP and may provide a promising strategy for predicting the developmental toxicity of related PAHs, without the need for extensive animal testing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wuyang Huang ◽  
Ky Young Cho ◽  
Di Meng ◽  
W. Allan Walker

AbstractAn excessive intestinal inflammatory response may have a role in the pathogenesis of necrotizing enterocolitis (NEC) in very preterm infants. Indole-3-lactic acid (ILA) of breastmilk tryptophan was identified as the anti-inflammatory metabolite involved in probiotic conditioned media from Bifidobacteria longum subsp infantis. This study aimed to explore the molecular endocytic pathways involved in the protective ILA effect against inflammation. H4 cells, Caco-2 cells, C57BL/6 pup and adult mice were used to compare the anti-inflammatory mechanisms between immature and mature enterocytes in vitro and in vivo. The results show that ILA has pleiotropic protective effects on immature enterocytes including anti-inflammatory, anti-viral, and developmental regulatory potentials in a region-dependent and an age-dependent manner. Quantitative transcriptomic analysis revealed a new mechanistic model in which STAT1 pathways play an important role in IL-1β-induced inflammation and ILA has a regulatory effect on STAT1 pathways. These studies were validated by real-time RT-qPCR and STAT1 inhibitor experiments. Different protective reactions of ILA between immature and mature enterocytes indicated that ILA’s effects are developmentally regulated. These findings may be helpful in preventing NEC for premature infants.


2002 ◽  
Vol 76 (13) ◽  
pp. 6480-6486 ◽  
Author(s):  
Alba-Lucia Combita ◽  
Antoine Touzé ◽  
Latifa Bousarghin ◽  
Neil D. Christensen ◽  
Pierre Coursaget

ABSTRACT The neutralizing activities of polyclonal antibodies and monoclonal antibodies (MAbs) obtained by immunization of mice with L1 virus-like particles (VLPs) were investigated by using pseudovirion infectivity assays for human papillomavirus type 16 (HPV-16), HPV-31, HPV-33, HPV-45, HPV-58, and HPV-59 to obtain a better definition of cross-neutralization between high-risk HPVs. In this study, we confirmed and extended previous studies indicating that most genital HPV genotypes represent separate serotypes, and the results suggest that the classification of serotypes is similar to that of genotypes. In addition, three cross-neutralizing MAbs were identified (HPV-16.J4, HPV-16.I23, and HPV-33.E12). MAb HPV-16.J4 recognized a conserved linear epitope located within the FG loop of the L1 protein, and HPV-16.I23 recognized another located within the DE loop. The results suggested that reactivity of MAb HPV-16.I23 to L1 protein is lost when leucine 152 of the HPV-16 L1 protein is replaced by phenylalanine. This confirmed the existence of linear epitopes within the L1 protein that induce neutralizing antibodies, and this is the first evidence that such linear epitopes induce cross-neutralization. However, the cross-neutralization induced by L1 VLPs represents less than 1% of the neutralizing activity induced by the dominant conformational epitopes, and it is questionable whether this is sufficient to offer cross-protection in vivo.


1981 ◽  
Vol 45 (2) ◽  
pp. 283-294 ◽  
Author(s):  
Ann-Sofie Sandberg ◽  
H. Andersson ◽  
B. Hallgren ◽  
Kristina Hasselblad ◽  
B. Isaksson ◽  
...  

1. An experimental model for the determination of dietary fibre according to the definition of Trowell et al. (1976) is described. Food was subjected to in vivo digestion in ileostomy patients, and the ileostomy contents were collected quantitatively, the polysaccharide components of which were analysed by gas–liquid chromatography and the Klason lignin by gravimetric determination. The model was used for the determination of dietary fibre in AACC (American Association of Cereal Chemists), wheat bran and for studies on the extent of hydrolysis of wheat-bran fibre in the stomach and small intestine. The effect of wheat bran on ileostomy losses of nitrogen, starch and electrolytes was also investigated.2. Nine patients with established ileostomies were studied during two periods while on a constant low-fibre diet. In the second period 16 g AACC wheat bran/d was added to the diet. The ileostomy contents and duplicate portions of the diet were subjected to determinations of wet weight, dry weight, water content, fibre components, starch, N, sodium and potassium.3. The wet weight of ileostomy contents increased by 94 g/24 h and dry weight by 10 g/24 h after consumption of bran. The dietary fibre of AACC bran, determined as the increase in polysaccharides and lignin of ileostomy contents after consumption of bran, was 280 g/kg fresh weight (310 g/kg dry matter). Direct analysis of polysaccharides and lignin in bran gave a value of 306 g/kg fresh weight. Of the added bran hemicellulose and cellulose 80–100% and 75–100% respectively were recovered in ileostomy contents. There was no significant difference between the two periods in amount of N, starch and K found in the ileostomy contents. The Na excretion increased during the ‘bran’ period and correlated well with the wet weight of ileostomy contents.4. In conclusion, it seems probable that determination of dietary fibre by in vivo digestion in ileostomy patients comes very close to the theoretical definition of dietary fibre, as the influence of bacteria in the ileum seems small. Bacterial growth should be avoided by using a technique involving the change of ileostomy bags every 2 h and immediate deep-freezing of the ileostomy contents. True dietary fibre can be determined by direct analysis of polysaccharides and lignin in the food, at least in bran. Very little digestion of hemicellulose and cellulose from bran occurs in the stomach and small bowel. The 10–20% loss in some patients may be due to digestion by the gastric juice or to bacterial fermentation in the ileum, or both. The extra amount of faecal N after consumption of bran, reported by others, is probably produced in the large bowel.


Sign in / Sign up

Export Citation Format

Share Document