scholarly journals Stochastic dynamics of chemotactic colonies with logistic growth

Author(s):  
Riccardo Ben Ali Zinati ◽  
Charlie Duclut ◽  
Saeed Mahdisoltani ◽  
Andrea Gambassi ◽  
Ramin Golestanian

Abstract The interplay between cellular growth and cell-cell signaling is essential for the aggregation and proliferation of bacterial colonies, as well as for the self-organization of cell tissues. To investigate this interplay, we focus here on the collective properties of dividing chemotactic cell colonies by studying their long-time and large-scale dynamics through a renormalization group (RG) approach. The RG analysis reveals that a relevant but unconventional chemotactic interaction -- corresponding to a polarity-induced mechanism -- is generated by fluctuations at macroscopic scales, even when an underlying mechanism is absent at the microscopic level. This emerges from the interplay of the well-known Keller--Segel (KS) chemotactic nonlinearity and cell birth and death processes. At one-loop order, we find no stable fixed point of the RG flow equations. We discuss a connection between the dynamics investigated here and the celebrated Kardar--Parisi--Zhang (KPZ) equation with long-range correlated noise, which points at the existence of a strong-coupling, nonperturbative fixed point.

2020 ◽  
Vol 10 (2) ◽  
pp. 103-106
Author(s):  
ASTEMIR ZHURTOV ◽  

Cruel and inhumane acts that harm human life and health, as well as humiliate the dignity, are prohibited in most countries of the world, and Russia is no exception in this issue. The article presents an analysis of the institution of responsibility for torture in the Russian Federation. The author comes to the conclusion that the current criminal law of Russia superficially and fragmentally regulates liability for torture, in connection with which the author formulated the proposals to define such act as an independent crime. In the frame of modern globalization, the world community pays special attention to the protection of human rights, in connection with which large-scale international standards have been created a long time ago. The Universal Declaration of Human Rights and other international acts enshrine prohibitions of cruel and inhumane acts that harm human life and health, as well as degrade the dignity.Considering the historical experience of the past, these standards focus on the prohibition of any kind of torture, regardless of the purpose of their implementation.


2019 ◽  
Vol 22 (5) ◽  
pp. 346-354
Author(s):  
Yan A. Ivanenkov ◽  
Renat S. Yamidanov ◽  
Ilya A. Osterman ◽  
Petr V. Sergiev ◽  
Vladimir A. Aladinskiy ◽  
...  

Aim and Objective: Antibiotic resistance is a serious constraint to the development of new effective antibacterials. Therefore, the discovery of the new antibacterials remains one of the main challenges in modern medicinal chemistry. This study was undertaken to identify novel molecules with antibacterial activity. Materials and Methods: Using our unique double-reporter system, in-house large-scale HTS campaign was conducted for the identification of antibacterial potency of small-molecule compounds. The construction allows us to visually assess the underlying mechanism of action. After the initial HTS and rescreen procedure, luciferase assay, C14-test, determination of MIC value and PrestoBlue test were carried out. Results: HTS rounds and rescreen campaign have revealed the antibacterial activity of a series of Nsubstituted triazolo-azetidines and their isosteric derivatives that has not been reported previously. Primary hit-molecule demonstrated a MIC value of 12.5 µg/mL against E. coli Δ tolC with signs of translation blockage and no SOS-response. Translation inhibition (26%, luciferase assay) was achieved at high concentrations up to 160 µg/mL, while no activity was found using C14-test. The compound did not demonstrate cytotoxicity in the PrestoBlue assay against a panel of eukaryotic cells. Within a series of direct structural analogues bearing the same or bioisosteric scaffold, compound 2 was found to have an improved antibacterial potency (MIC=6.25 µg/mL) close to Erythromycin (MIC=2.5-5 µg/mL) against the same strain. In contrast to the parent hit, this compound was more active and selective, and provided a robust IP position. Conclusion: N-substituted triazolo-azetidine scaffold may be used as a versatile starting point for the development of novel active and selective antibacterial compounds.


2021 ◽  
Vol 56 (1) ◽  
pp. 112-130 ◽  
Author(s):  
Haifeng Huang

AbstractFor a long time, since China’s opening to the outside world in the late 1970s, admiration for foreign socioeconomic prosperity and quality of life characterized much of the Chinese society, which contributed to dissatisfaction with the country’s development and government and a large-scale exodus of students and emigrants to foreign countries. More recently, however, overestimating China’s standing and popularity in the world has become a more conspicuous feature of Chinese public opinion and the social backdrop of the country’s overreach in global affairs in the last few years. This essay discusses the effects of these misperceptions about the world, their potential sources, and the outcomes of correcting misperceptions. It concludes that while the world should get China right and not misinterpret China’s intentions and actions, China should also get the world right and have a more balanced understanding of its relationship with the world.


1992 ◽  
Vol 114 (4) ◽  
pp. 847-857 ◽  
Author(s):  
J. H. Wagner ◽  
B. V. Johnson ◽  
R. A. Graziani ◽  
F. C. Yeh

Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large-scale, multipass, heat transfer model with both radially inward and outward flow. Trip strips on the leading and trailing surfaces of the radial coolant passages were used to produce the rough walls. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant-to-wall temperature ratio, Rossby number, Reynolds number, and radius-to-passage hydraulic diameter ratio. The first three of these four parameters were varied over ranges that are typical of advanced gas turbine engine operating conditions. Results were correlated and compared to previous results from stationary and rotating similar models with trip strips. The heat transfer coefficients on surfaces, where the heat transfer increased with rotation and buoyancy, varied by as much as a factor of four. Maximum values of the heat transfer coefficients with high rotation were only slightly above the highest levels obtained with the smooth wall model. The heat transfer coefficients on surfaces where the heat transfer decreased with rotation, varied by as much as a factor of three due to rotation and buoyancy. It was concluded that both Coriolis and buoyancy effects must be considered in turbine blade cooling designs with trip strips and that the effects of rotation were markedly different depending upon the flow direction.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1866
Author(s):  
Zahid Javid ◽  
Ulas Karaagac ◽  
Ilhan Kocar ◽  
Ka Wing Chan

There is an increasing interest in low voltage direct current (LVDC) distribution grids due to advancements in power electronics enabling efficient and economical electrical networks in the DC paradigm. Power flow equations in LVDC grids are non-linear and non-convex due to the presence of constant power nodes. Depending on the implementation, power flow equations may lead to more than one solution and unrealistic solutions; therefore, the uniqueness of the solution should not be taken for granted. This paper proposes a new power flow solver based on a graph theory for LVDC grids having radial or meshed configurations. The solver provides a unique solution. Two test feeders composed of 33 nodes and 69 nodes are considered to validate the effectiveness of the proposed method. The proposed method is compared with a fixed-point methodology called direct load flow (DLF) having a mathematical formulation equivalent to a backward forward sweep (BFS) class of solvers in the case of radial distribution networks but that can handle meshed networks more easily thanks to the use of connectivity matrices. In addition, the convergence and uniqueness of the solution is demonstrated using a Banach fixed-point theorem. The performance of the proposed method is tested for different loading conditions. The results show that the proposed method is robust and has fast convergence characteristics even with high loading conditions. All simulations are carried out in MATLAB 2020b software.


2012 ◽  
Vol 09 (05) ◽  
pp. 1250039 ◽  
Author(s):  
SANJIT DAS ◽  
SAYAN KAR

We investigate various aspects of a geometric flow defined using the Bach tensor. First, using a well-known split of the Bach tensor components for (2, 2) unwarped product manifolds, we solve the Bach flow equations for typical examples of product manifolds like S2 × S2, R2 × S2. In addition, we obtain the fixed-point condition for general (2, 2) manifolds and solve it for a restricted case. Next, we consider warped manifolds. For Bach flows on a special class of asymmetrically warped 4-manifolds, we reduce the flow equations to a first-order dynamical system, which is solved exactly to find the flow characteristics. We compare our results for Bach flow with those for Ricci flow and discuss the differences qualitatively. Finally, we conclude by mentioning possible directions for future work.


Fluids ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 148
Author(s):  
Seyed Amin Nabavizadeh ◽  
Himel Barua ◽  
Mohsen Eshraghi ◽  
Sergio D. Felicelli

A multi-distribution lattice Boltzmann Bhatnagar–Gross–Krook (BGK) model with a multiple-grid lattice Boltzmann (MGLB) model is proposed to efficiently simulate natural convection over a wide range of Prandtl numbers. In this method, different grid sizes and time steps for heat transfer and fluid flow equations are chosen. The model is validated against natural convection in a square cavity, since extensive benchmark solutions are available for that problem. The proposed method can resolve the computational difficulty in simulating problems with very different time scales, in particular, when using extremely low or high Prandtl numbers. The technique can also enhance computational speed and stability while keeping the simplicity of the BGK method. Compared with the conventional lattice Boltzmann method, the simulation time can be reduced up to one-tenth of the time while maintaining the accuracy in an acceptable range. The proposed model can be extended to other lattice Boltzmann collision models and three-dimensional cases, making it a great candidate for large-scale simulations.


Author(s):  
Sean Brantley ◽  
Michael Wilkinson ◽  
Jing Feng

This study investigates placebos and video games’ usefulness as psychological research tools. One proposed underlying mechanism of the placebo effect is participants’ expectations. Such expectation effects exist in sports psychology and healthcare domains, but inconsistent findings have emerged on whether similar effects impact a participants’ cognitive performance. Concurrently, using video games as task environments is an emerging methodology relating to expertise and large-scale behavioral data collection. Therefore, this study examines the expectancy effect induced by researcher instructions on in-game performance. The instructional expectancy condition for this study is in-game successes framed using emoting (e.g., emoting under the pretense of subsequent performance increases) versus a control group. Preliminary results showed no evidence of different in-game performance between expectancy conditions. Potential mechanisms that could have led to a lack of effect were discussed.


2021 ◽  
pp. 5-20
Author(s):  
M. V. Ershov

The global economy continues to grow, albeit mainly due to large-scale support measures from governments and regulators. Moreover, the latter are not sure about the prospects for such development, since the economies do not demonstrate the potential for independent growth. As a result, in order to stimulate it, regulators are forced to expand the range of their tools, mechanisms, approaches, otherwise the risks to the stability of the global financial and economic system increase. All this is happening against the background of negative rates, which have become virtually ubiquitous and persist for a long time. New growth records are being set in the stock markets, and their gap from the real economy is growing. A number of sectors are beginning to dominate, forming distortions and bubbles in the markets. In such conditions, the importance of digital money, ecosystems, etc. increases. Moreover, the faster and more efficiently regulators can integrate into these formats, the more successful business, the population, and the economy as a whole will be.


2021 ◽  
Author(s):  
Rohit Chhiber ◽  
Arcadi Usmanov ◽  
William Matthaeus ◽  
Melvyn Goldstein ◽  
Riddhi Bandyopadhyay

<div>Simulation results from a global <span>magnetohydrodynamic</span> model of the solar corona and the solar wind are compared with Parker Solar <span>Probe's</span> (<span>PSP</span>) observations during its first several orbits. The fully three-dimensional model (<span>Usmanov</span> <span>et</span> <span>al</span>., 2018, <span>ApJ</span>, 865, 25) is based on Reynolds-averaged mean-flow equations coupled with turbulence transport equations. The model accounts for effects of electron heat conduction, Coulomb collisions, Reynolds stresses, and heating of protons and electrons via nonlinear turbulent cascade. Turbulence transport equations for turbulence energy, cross <span>helicity</span>, and correlation length are solved concurrently with the mean-flow equations. We specify boundary conditions at the coronal base using solar synoptic <span>magnetograms</span> and calculate plasma, magnetic field, and turbulence parameters along the <span>PSP</span> trajectory. We also accumulate data from all orbits considered, to obtain the trends observed as a function of heliocentric distance. Comparison of simulation results with <span>PSP</span> data show general agreement. Finally, we generate synthetic fluctuations constrained by the local rms turbulence amplitude given by the model, and compare properties of this synthetic turbulence with PSP observations.</div>


Sign in / Sign up

Export Citation Format

Share Document